x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
Гидродинамика, Биркгоф Г., 1963

Гидродинамика, Биркгоф Г., 1963

Гидродинамика, Биркгоф Г., 1963.

  Цель предлагаемой книги состоит не в решении частных задач гидромеханики и не в получении каких-либо новых конкретных выводов по существу конкретных явлений, а также не в сообщении отдельных результатов, полезных для приложений. Ее автор Г. Биркгоф, математик, известный своими работами в весьма отвлеченных областях алгебры и топологии, поставил себе целью проанализировать и систематически изложить некоторые интересные особенности логических посылок и математических постановок задач гидромеханики, а также проследить связи этих посылок и постановок с практикой и наблюдениями в природе. Кроме этого, в книге содержатся замечания о некоторых предельных переходах, применяемых в гидромеханике.

Теоретическая гидродинамика.
Теоретическая (рациональная) гидродинамика стремится приближенно предсказать движение реальной жидкости путем решения краевых задач для соответствующих систем дифференциальных уравнений в частных производных. При составлении этих уравнений в качестве аксиом принимают законы движения Ньютона. Предполагается также, что рассматриваемая жидкость (обычная жидкость или газ) всюду непрерывна и что на любую часть поверхности действует вполне определенное давление или какое-либо другое внутреннее напряжение (сила, приходящаяся на единицу площади), которое, по крайней мере локально, является дифференцируемой функцией координат, времени и направления. Наконец, устанавливается связь этих напряжений с движением жидкости посредством введения различных параметров, характеризующих данное вещество (плотность, вязкость и т. д.), и функциональных зависимостей (закон адиабатического сжатия и т. п.). Исходя из таких допущений, математики составили системы дифференциальных уравнений для различных идеализированных жидкостей (несжимаемой невязкой, сжимаемой невязкой, несжимаемой вязкой и т. д.).

Для того чтобы получить вполне определенные, или корректно поставленные), задачи для таких дифференциальных уравнений, необходимо еще задать соответствующие краевые условия, относящиеся либо к начальному состоянию движения, либо к движению стенок и препятствий, ограничивающих течение жидкости, либо и к тому, и к другому. Теоретическая гидродинамика включает в себя изучение краевых задач, которые получаются в результате сочетания этих краевых условий с дифференциальными уравнениями для идеализированных жидкостей).