x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
ВИДЕОКУРСЫ
Алгебра и начала математического анализа, 10 класс, Дидактические материалы, Соломин В.Н., Столбов К.М., Пратусевич М.Я., 2010

Алгебра и начала математического анализа, 10 класс, Дидактические материалы, Соломин В.Н., Столбов К.М., Пратусевич М.Я., 2010

Алгебра и начала математического анализа, 10 класс, Дидактические материалы, Соломин В.Н., Столбов К.М., Пратусевич М.Я., 2010.

   Дидактические материалы предназначены для классов с углубленным изучением математики и составлены по учебнику Пратусевича М.Я. и др. «Алгебра и начала математического анализа. 10 класс». Дидактические материалы содержат самостоятельные и контрольные работы.
Возможно использование дидактических материалов и в обычных классах с целью повышения уровня предметной компетенции учащихся по алгебре и началам математического анализа, а также при подготовке к экзаменам.

Данное пособие разрабатывалось для работы с учебником «Алгебра и начала математического анализа. 10 класс» авторов М.Я. Пратусевича, К.Н. Столбова и А.Н. Головина. Дидактические материалы содержат самостоятельные и контрольные работы к каждой главе учебника, а также ответы к большинству из них. В таблице использования самостоятельных и контрольных работ (с. 4) приведены параграфы и пункты учебника, после которых рекомендуется давать предложенные работы.

Каждая самостоятельная работа обозначена буквой С и двойным номером, обозначающим соответственно номер главы, к которой относится эта самостоятельная работа, и её порядковый номер. Самостоятельные работы даны в двух вариантах.

Задания в достаточной степени обеспечивают проверку усвоения программы по математике в специализированных физико-математических классах. Каждой теме отдельной главы соответствуют несколько самостоятельных работ, которые, как правило, избыточны. Это сделано для того, чтобы учитель сам мог, ориентируясь на конкретные условия, разгружать самостоятельные работы или их комбинировать.

СОДЕРЖАНИЕ
Предисловие 3
С—1.1. Высказывания и предикаты. Логические операции над ними 9
С—1.2. Понятие множества. Способы задания множеств. Подмножества 10
С—1.3. Операции над множествами 11
С—1.4. Кванторы 12
С—1.5. Отрицание. Следование и равносильность 13
С—1.6. Структура теорем. Необходимые и достаточные условия 14
С—1.7. Метод математической индукции 15
С—1.8. Разбор случаев. Правило умножения 16
С—1.9. Размещения и перестановки 17
С—1.10. Ограниченные числовые множества. Точные границы 18
С—2.1. Деление с остатком 19
С—2.2. Делимость 20
С—2.3. Делимость 21
С—2.4. Сравнения 22
С—2.5. Наибольший общий делитель. Наименьшее общее кратное —
С—2.6. Взаимно простые числа 23
С—2.7. Простые числа 24
С—2.8. Основная теорема арифметики 25
С—2.9. Решение уравнений в целых числах 26
С—3.1. Определение многочлена. Степень многочлена 27
С—3.2. Действия с многочленами 28
С—3.3. Метод неопределённых коэффициентов 29
С—3.4. Деление многочленов с остатком 30
С—3.5. Схема Горнера 30
С—3.6. Многочлен как функция 31
С—3.7. Применение теоремы Безу. Корни многочленов 32
С—3.8. Следствия теоремы Безу 33
С—3.9. Многочлены с целыми коэффициентами и их рациональные корни 34
С—3.10. Рациональные корни многочлена 35
С—3.11. Теорема Виета 36
С—4.1. Определение функции 37
С—4.2. Способы задания функции 39
С—4.3. Область определения и множество значений функции 40
С—4.4. Кусочное задание функции 41
С—4.5. Ограниченность функции 42
С—4.6. Монотонность функции 43
С—4.7. Применение монотонности функции 44
С—4.8. Чётные и нечётные функции 45
С—4.9. Чётные и нечётные функции 46
С—4.10. Периодические функции 47
С—4.11. Периодические функции 49
С—4.12. Композиция функций 50
С—4.13. Простейшие функциональные уравнения 51
С—4.14. Обратная функция 52
С—4.15. Элементарные преобразования графиков 53
С—4.16. Построение графиков функций 54
С—4.17. Построение графиков функций 55
С—5.1. Определение корня. Свойства корней, вытекающие из определения 56
С—5.2. Свойства корней, связанные с арифметическими действиями 57
С—5.3. Определение степени с рациональным показателем 58
С—5.4. Степенная функция 59
С—5.5. Показательная функция. График показательной функции 60
С—5.6. Свойства показательной функции 61
С—5.7. Простейшие показательные уравнения и неравенства 62
С—5.8*. Показательные уравнения и неравенства 63
С—5.9. Определение логарифма 64
С—5.10. Свойства логарифмов, связанные с арифметическими действиями 65
С—5.11. Формула перехода к другому основанию 66
С—5.12. Логарифмическая функция и её монотонность 67
С—5.13. Свойства логарифмической функции 68
С—5.14. Простейшие логарифмические уравнения и неравенства 69
С—5.15. Логарифмические уравнения и неравенства 70
С—6.1. Радианное измерение углов 71
С—6.2. Изображение вещественных чисел на единичной окружности 72
С—6.3. Изображение вещественных чисел на единичной окружности 73
С—6.4. Синус и косинус числа. Вычисление значений 75
С—6.5. Синус и косинус числа. Простейшие уравнения и неравенства 76
С—6.6. Основное тригонометрическое тождество 77
С—6.7. Простейшие свойства синуса и косинуса 78
С—6.8. Простейшие тригонометрические уравнения. Арксинус и арккосинус 79
С—6.9. Определение тангенса и котангенса. Геометрическое изображение тангенса и котангенса 80
С—6.10. Простейшие свойства тангенса и котангенса 81
С—6.11. Следствия из основного тригонометрического тождества 82
С—6.12. Арктангенс и арккотангенс 83
С—6.13. Синус и косинус суммы и разности 84
С—6.14. Формулы приведения 85
С—6.15. Формулы двойного и половинного углов 86
С—6.16. Формулы двойного и половинного углов 87
С—6.17. Выражение тригонометрических функций через тангенс половинного аргумента. Метод вспомогательного аргумента 88
С—6.18. Преобразование суммы тригонометрических функций в произведение и обратно 89
С—6.19. Тригонометрические преобразования 90
С—6.20. Тригонометрические преобразования 91
С—6.21. Наибольшее и наименьшее значения тригонометрических функций 92
С—6.22. Свойства и графики тригонометрических функций 93
С—6.23. Свойства и графики тригонометрических функций 94
С—6.24. Периодичность тригонометрических функций 95
С—6.25. Обратные тригонометрические функции 96
С—6.26. Обратные тригонометрические функции 97
С—6.27. Уравнения и неравенства, содержащие обратные тригонометрические функции 98
С—6.28. Тригонометрические уравнения, сводящиеся к простейшим 99
С—6.29. Тригонометрические уравнения 100
С—6.30. Тригонометрические уравнения 101
С—6.31. Тригонометрические неравенства —
С—7.1. Способы задания последовательностей 102
С—7.2. Общие свойства последовательностей 103
С—7.3. Общие свойства последовательностей 104
С—7.4. Определение предела последовательности 106
С—7.5. Свойства предела последовательности 107
С—7.6. Бесконечно малые и бесконечно большие последовательности 108
С—7.7. Арифметические действия над сходящимися последовательностями 110
С—7.8. Вычисление пределов. Разные методы 111
С—7.9. Предел монотонной последовательности. Теорема Вейерштрасса 112
К—1 113
К—2 115
К—3 116
К—4 117
К—5 119
К—6 120
К—7 122
К—8 124
К—9 126
К—10 127
К—11 129
Ответы и указания 131.

Предложения интернет-магазинов

Алгебра и начала математического анализа 10 класс. Учебник . ФГОС

Автор(ы): Пратусевич Максим Яковлевич, Головин Алексей Николаевич, Столбов Константин Михайлович   Издательство: Просвещение, 2014 г.  Серия: Математика и информатика

Цена: 955 руб.   Купить

Учебник предназначен для классов с профильным уровнем изучения математики, в которых на изучение алгебры и начал математического анализа отведено не менее 4 часов в неделю. Содержание учебника полностью охватывает все разделы и темы, предусмотренные Государственным стандартом профильного уровня и требованиями к подготовке выпускника. Выделен материал, пригодный для изучения в рамках элективных курсов. Основное внимание уделяется изучению методов решения задач. Впервые введены новые типы и классы задач по всем разделам курса. Рекомендовано Министерством образования и науки РФ.


Алгебра и начала математического анализа. 10 класс. Дидактические материалы. Баз. и углубл. уровни

Автор(ы): Потапов Михаил Константинович, Шевкин Александр Владимирович   Издательство: Просвещение, 2017 г.  Серия: Математика и информатика

Цена: 258 руб.   Купить

Сборник содержит самостоятельные и контрольные работы с итоговым тестом к учебнику "Алгебра и начала анализа, 10" С. М. Никольского и др. Дидактические материалы дополняют учебник более сложными заданиями, необходимыми для работы в классах с углубленным изучением математики. В книгу включены также материалы для подготовки к самостоятельным работам с примерами выполнения заданий, аналогичных заданиям из самостоятельных работ. Сборник можно использовать при работе по любому учебнику, а также для самообразования. 10-е издание.


Рабочие программы. математика: алгебра и начала мат. анализа, геометрия. 10-11 классы. ФГОС

  Издательство: Дрофа, 2013 г.  Серия: Алгебра

Цена: 154 руб.   Купить

В сборнике представлены рабочие программы по предмету "Математика: алгебра и начала математического анализа, геометрия" базового уровня к УМК Г. К. Муравина, О. В. Муравиной по алгебре и началам математического анализа и УМК И. Ф. Шарыгина по геометрии, а так же программы для изучения предмета "Математика: алгебра и начала математического анализа, геометрия" на углубленном уровне к УМК Г. К. Муравина, О. В. Муравиной по алгебре и началам математического анализа и УМК Е. В. Потоскуева по геометрии. Учебники соответствуют Федеральному государственному образовательному стандарту среднего (полного) общего образования, одобрены РАО и РАН, имеют гриф "Рекомендовано" и включены в Федеральный перечень учебников. Составитель: Муравина Ольга Викторовна.


Алгебра и начала математического анализа. 11 класс. Методическое пособие для учителя. ФГОС

Автор(ы): Мордкович Александр Григорьевич, Семенов Павел Владимирович   Издательство: Мнемозина, 2015 г.  Серия: Математика

Цена: 393 руб.   Купить

В пособии представлены рабочая программа курса алгебры и начал математического анализа в 10-11-м классах, приведено примерное тематическое планирование учебного материала в 11-м классе (с характеристикой видов учебной деятельности). Даны методические рекомендации по работе с учебником А. Г. Мордковича, П. В. Семенова "Алгебра и начала математического анализа. 11 класс (базовый и углублённый уровни)" и приведены решения наиболее трудных задач из второй части учебника. 3-е издание, переработанное.