x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
Дифференциальные и интегральные уравнения, вариационное исчисление в примерах и задачах, Васильева А.Б., Медведев Г.Н., 2005

Дифференциальные и интегральные уравнения, вариационное исчисление в примерах и задачах, Васильева А.Б., Медведев Г.Н., 2005

Дифференциальные и интегральные уравнения, вариационное исчисление в примерах и задачах, ВВасильева А.Б., Медведев Г.Н., 2005.

    Пособие охватывает все разделы курсов "Дифференциальные и интегральные уравнения. Вариационное исчисление". По каждой теме кратко излагаются основные теоретические сведения; приводятся решения стандартных и нестандартных задач; даются задачи с ответами для самостоятельной работы.
Для студентов ВУЗов, обучающихся по специальностям "Физика" и "Прикладная математика".

Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной.

Порядком дифференциального уравнения называется максимальный порядок входящих в него производных.

Уравнения, содержащие производные от неизвестной функции только но одной независимой переменной, называются обыкновенными.
Уравнение (1) называется неразрешенным относительно производной, уравнение (2) — разрешенным относительно производной.

Решением уравнения (2) называется любая дифференцируемая функция у = у(х), обращающая уравнение (2) в тождество. График решения на плоскости (я, у) называется интегральной кривой.

Множество всех решений уравнения (1) называется общим решением уравнения (1). Всякое отдельно взятое решение называется частным решением.
Интегрированием уравнения называется процесс нахождения его решений.
В математическом анализе интегрированием называется операция нахождения функции по заданной производной.

ОГЛАВЛЕНИЕ
Глава 1. Обыкновенные дифференциальные уравнения первого порядка

§ 1. Обыкновенные дифференциальные уравнения первого порядка, разрешенные относительно производной
§ 2. Элементарные методы интегрирования
§ 3. Уравнения первого порядка, не разрешенные относительно производной
§ 4. Зависимость решения от параметров
Глава 2. Дифференциальные уравнения высших порядков. Системы дифференциальных уравнений
§ 1. Дифференциальные уравнения высших порядков
§ 2. Системы дифференциальных уравнений в нормальной форме
Глава 3. Линейные дифференциальные уравнения
§ 1. Линейные однородные уравнения
§ 2. Линейные неоднородные уравнения
§ 3. Линейные однородные уравнения с постоянными коэффициентами
§ 4. Линейные неоднородные уравнения с постоянными коэффициентами
§ 5. Интегрирование дифференциальных уравнений с помощью рядов
§ 6. Операционный метод решения дифференциальных уравнений с помощью преобразования Лапласа
§ 7. Операторный метод Хевисайда решения дифференциальных уравнений
Глава 4. Системы линейных дифференциальных уравнений
§ 1. Линейные однородные системы
§ 2. Линейные неоднородные системы
§ 3. Линейные однородные системы с постоянными коэффициентами
§ 4. Линейные неоднородные системы с постоянными коэффициентами
Глава 5. Краевая задача для линейного уравнения второго порядка
§ 1. Неоднородная краевая задача
§ 2. Краевая задача на собственные значения (задача Штурма-Лиувилля)
Глава 6. Теория устойчивости
§ 1. Устойчивость по Ляпунову
§ 2. Методы исследования на устойчивость
§ 3. Фазовая плоскость
Глава 7. Асимптотические методы
§ 1. Асимптотика решения дифференциального уравнения по независимому переменному
§ 2. Асимптотика по параметру. Регулярные возмущения
§ 3. Асимптотика по параметру. Сингулярные возмущения
Глава 8. Уравнения в частных производных первого порядка
§ 1. Линейные уравнения
§ 2. Квазилинейные уравнения
§ 3. Разрывные решения
Глава 9. Вариационное исчисление
§ 1. Понятие функционала
§ 2. Вариация функционала
§ 3. Экстремум функционала. Необходимое условие экстремума.
§ 4. Простейшая задача вариационного исчисления. Уравнение Эйлера
§ 5. Обобщения простейшей задачи вариационного исчисления
§ 6. Достаточные условия экстремума функционала
§ 7. Задача с подвижными границами
§ 8. Условный экстремум
Глава 10. Интегральные уравнения
§ 1. Однородное уравнение Фредгольма II рода
§ 2. Неоднородное уравнение Фредгольма II рода
§ 3. Интегральные уравнения Вольтерра II рода
§ 4. Интегральные уравнения с ядром, зависящим от разности аргументов.

Предложения интернет-магазинов

Тренажер. Учимся решать уравнения

Автор(ы): Знаменская Лариса Фоминична   Издательство: Стрекоза, 2016 г.  Серия: Тренажер

Цена: 59 руб.   Купить

Это пособие адресовано учащимся начальной школы. Оно предназначено для отработки навыков решения уравнений. В тренажёре представлены задания, направленные на отработку умения правильно записывать уравнения, анализировать условия, находить корень уравнения и делать проверку. В пособии вы найдёте задания разного уровня сложности: - простые уравнения на сложение и вычитание - уравнения с несколькими действиями на сложение и вычитание - простые уравнения на умножение и деление - уравнения с несколькими действиями на умножение и деление Также в пособии предусмотрено место для решения уравнений, поэтому можно использовать тренажёр как тетрадь. Для младшего школьного возраста.


Комплект наглядных пособий. 2 класс. Математика. В 4-х частях. Часть 4

  Издательство: Баласс, 2006 г.  Серия: Образовательная система "Школа 2100"

Цена: 616 руб.   Купить

Наглядные пособия предназначены для использования во 2-м классе на уроках курса математики при работе по любому из действующих учебников. В часть 4 включены таблицы по следующим темам: Таблица 17: Уравнения. Таблица 18: Уравнения. Таблица 19: Уравнения. Умножение с нулем и единицей. Таблица 20: Уравнения. Правила порядка действий. Таблица 23: Цена, количество, стоимость. Составитель: С.А.Белякова.


Информатика в играх и задачах. 1 класс. Методические рекомендации для учителя. ФГОС

Автор(ы): Горячев Александр Владимирович, Волкова Татьяна Олимповна, Горина Ксения Игоревна   Издательство: Баласс, 2012 г.  Серия: Образовательная система "Школа 2100"

Цена: 287 руб.   Купить

Пособие включает описание уроков по курсу "Информатика в играх и задачах" в 1-м классе. Для проведения занятий компьютеры не требуются. Учебник "Информатика в играх и задачах" соответствует Федеральному компоненту государственного стандарта общего образования, является составной частью комплекта учебников Образовательной системы "Школа 2100". 3-е издание, исправленное.


Математика. Задачи типа 20. Уравнения, неравенства и системы с параметром

Автор(ы): Балаян Эдуард Николаевич   Издательство: Феникс, 2015 г.  Серия: Большая перемена

Цена: 241 руб.   Купить

В предлагаемом пособии представлен материал для подготовки к решению задач типа 20 на ЕГЭ по математике, посвященный уравнениям, неравенствам и системам с параметром. На многочисленных примерах с подробными решениями и обоснованиями рассмотрены различные типы задач и методы их решения. Для удобства пользования книгой приводятся краткая теория и справочные материалы, а в конце каждого параграфа - задачи для самостоятельного решения. Пособие предназначено для старшеклассников, абитуриентов. учителей математики, студентов педвузов, слушателей подготовительных отделений вузов, методистов и репетиторов.