x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
Задачи вступительных экзаменов по математике, Нестеренко Ю.В., Олехник С.Н., Потапов М.К., 1996

Задачи вступительных экзаменов по математике, Нестеренко Ю.В., Олехник С.Н., Потапов М.К., 1996

Задачи вступительных экзаменов по математике, Нестеренко Ю.В., Олехник С.Н., Потапов М.К., 1996.

В книге собрано более 1700 задач, предлагавшихся на вступительных экзаменах на 13 факультетах Московского государственного университета им. М.В. Ломоносова в 1984-1989 и в 1992-1994 годах.
Многие задачи сопровождаются подробными решениями, остальные снабжены ответами.

Эта книга является непосредственным продолжением книги под тем же названием, изданной издательством "Наука" в 1986 году и содержащей задачи, предлагавшиеся на вступительных экзаменах в МГУ в 1977-1983 годах.

Для преподавателей и учащихся старших классов средней школы, для руководителей и участников математических кружков.

Содержание
§ 1. Механико-математический факультет
§ 2. Факультет вычислительной математики и кибернетики
§ 3. Физический факультет
§ 4. Химический факультет
§ 5. Биологический факультет
§ 6. Факультет почвоведения
§ 7. Географический факультет
§ 8. Геологический факультет (отделение геофизики)
§ 9. Геологический факультет (отделение общей геологии)
§10. Экономический факультет (отделение политической экономии)
§11. Экономический факультет (отделение планирования и экономической кибернетики)
§12. Факультет психологии
§13. Филологический факультет (отделение структурной и прикладной лингвистики)
Дополнение. Варианты заданий, предлагавшиеся в 1992 - 1994 годах.

Примеры.
1. Из середины D гипотенузы АВ прямоугольного треугольника АВС проведен луч, перпендикулярный к гипотенузе и пересекающий один из катетов. На нем отложен отрезок DE, длина которого равна половине длины отрезка АВ. Длина отрезка СЕ равна 1 и совпадает с длиной одного из катетов. Найти площадь треугольника ABC. Представить приближенное значение этой площади в виде десятичной дроби с точностью до 0,01.

2. В четырехугольной пирамиде SABCD основание A BCD имеет своей осью симметрии диагональ АСЛ длина которой равна 9 см, а точка Е пересечения диагоналей четырехугольника ABCD делит отрезок АС так, что длина отрезка АЕ меньше длины отрезка ЕС. Через середину бокового ребра пирамиды SABCD проведена плоскость, параллельная основанию и пересекающаяся с ребрами SA, SB, SC, SD соответственно в точках А', В', C', D'. Получившийся многогранник ABCDA'B'C'D', являющийся частью пирамиды SABCD, пересекается плоскостью а по правильному шестиугольнику, длина стороны которого равна 2 см. Найти площадь треугольника ABD, если плоскость а пересекает отрезки ВВ' и DD'.

3. Биссектриса угла А треугольника АВС пересекает сторону ВС в точке D. Прямая, проведенная из точки D перпендикулярно к биссектрисе внешнего угла С треугольника АВС, пересекает прямую АС в точке К, а прямая, проведенная из точки D перпендикулярно биссектрисе угла В треугольника АВС, пересекает сторону АВ в точке Е. Найти длину отрезка AD, если длина отрезка АЕ равна 2 см, а длина отрезка АК равна 8 см.

4. Из середины М гипотенузы АС прямоугольного треугольника ABC проведен луч, перпендикулярный к гипотенузе и не пересекающий ни одного из катетов. На нем отложен отрезок МК, длина которого равна половине длины отрезка АС. Длина отрезка KB равна 1 и совпадает с длиной одного из катетов. Найти площадь треугольника ABC. Представить приближенное значение этой площади в виде десятичной дроби с точностью до 0,01.

Предложения интернет-магазинов

Сборник задач по математике для поступающих в вузы

Автор(ы): Норин Александр Владимирович, Старков Сергей Николаевич, Петрас Станислав Вацлавович, Родина Татьяна Васильевна, Рыжков Александр Евгеньевич, Тимофеева Галина Васильевна   Издательство: Питер, 2010 г.  Серия: Учебное пособие

Цена: 94 руб.   Купить

Сборник составлен в соответствии с программой вступительных экзаменов по математике технических вузов и соответствует уровню требований, предъявляемых к абитуриентам на письменных вступительных испытаниях. Материалы сборника могут быть использованы преподавателями курсов довузовской подготовки в технических вузах, учителями школ, а также абитуриентами для самостоятельной подготовки к вступительным экзаменам по математике.


Справочник по математике для подготовки к ОГЭ и ЕГЭ

Автор(ы): Балаян Эдуард Николаевич   Издательство: Феникс, 2016 г.  Серия: Большая перемена

Цена: 84 руб.   Купить

Справочник предназначен для выпускников средних образовательных заведений: школ, гимназий, лицеев, училищ или техникумов и абитуриентов высших учебных заведений при подготовке и сдаче выпускных и вступительных экзаменов.


Математика. Задачи С2. Геометрия. Стереометрия

Автор(ы): Балаян Эдуард Николаевич   Издательство: Феникс, 2014 г.  Серия: Большая перемена

Цена: 139 руб.   Купить

Предлагаемая вниманию старшеклассников книга содержит более 800 разноуровневых задач по стереометрии типа С2 для подготовки к ЕГЭ, из которых около 150 приводятся с подробными решениями и обоснованиями. Эти задачи не только помогут учащимся углубить свои знания, проверить и закрепить практические навыки при систематическом изучении курса стереометрии, но и предоставят прекрасную возможность для самостоятельной эффективной подготовки к успешной сдаче ЕГЭ и вступительных экзаменов по математике. Для удобства пользования книгой приводятся краткие теоретические сведения и необходимые справочные материалы. В заключительной части книги даны решения задач с помощью метода координат. Пособие предназначено для старшеклассников, учителей математики, студентов математических факультетов - будущих учителей, методистов и репетиторов.


Математика. Задачи типа 14 (С2). Геометрия. Стереометрия. Профильный уровень

Автор(ы): Балаян Эдуард Николаевич   Издательство: Феникс, 2016 г.  Серия: Большая перемена

Цена: 237 руб.   Купить

Предлагаемая вниманию старшеклассников книга содержит более 800 разноуровневых задач типа 14 (С2) по стереометрии для подготовки к ЕГЭ, из которых около 150 приводятся с подробными решениями и обоснованиями. Эти задачи не только помогут учащимся углубить свои знания, проверить и закрепить практические навыки при систематическом изучении курса стереометрии, но и предоставят прекрасную возможность для самостоятельной эффективной подготовки к успешной сдаче ЕГЭ и вступительных экзаменов по математике. Для удобства пользования книгой приводятся краткие теоретические сведения и необходимые справочные материалы. В заключительной части книги даны решения задач с помощью метода координат. Пособие предназначено для старшеклассников, учителей математики, студентов математических факультетов - будущих учителей, методистов и репетиторов.