x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
ВИДЕОКУРСЫ
Задачи вступительных экзаменов, Егоров А.А., Тихомирова В.А., 2008

Задачи вступительных экзаменов, Егоров А.А., Тихомирова В.А., 2008

Задачи вступительных экзаменов, Егоров А.А., Тихомирова В.А., 2008.

В книге приводятся материалы вступительных экзаменов по математике и физике в различные ВУЗы страны в 2008 году.

Для старшеклассников и выпускников средних школ, лицеев и гимназий, для слушателей подготовительных отделений и курсов, а также для тех, кто самостоятельно готовится к конкурсным экзаменам в ВУЗ.

Примеры.
1. В математическом кружке более 23%, но менее 24% участников - девочки. Каково наименьшее возможное количество участников в этом кружке?

2. В треугольной пирамиде SABC длины всех ребер измеряются целыми числами. Известно, что АВ = 3, ВС = 7, SA = 14, SC = 6. Найдите длину ребра SB.

3. Вася и Петя бегают на коньках по кругу с постоянными скоростями. Когда они бегут в одном направлении, Вася догоняет Петю каждые 12 минут, а когда они бегут навстречу друг другу, то встречаются каждые 4 минуты. За сколько минут Вася пробегает круг?

4. Найдите наибольший общий делитель чисел 8651 и 9073.

5. Прямоугольник со сторонами 11 и 4 разделен диагональю на два треугольника, в каждый из которых вписана окружность. Найдите расстояние между точками касания этих окружностей с диагональю.

6. Угол обзора Таниного фотоаппарата равен 90°, т.е. Таня фотографирует произвольный прямой угол (граница угла тоже попадает на снимок). В городе несколько небоскребов. Таня заметила, что с каждого из них она может сфотографировать не более 5 других небоскребов. (Небоскребы считаются точками на плоскости.) Какое наибольшее число небоскребов могло быть в городе, если никакие три из них не лежат на одной прямой?

7. Воинственная страна Дендралия имеет 10 военных баз за рубежом. Каждую такую базу надо соединить секретной телефонной линией с одной из N телефонных станций внутри страны, а эти телефонные станции — несколькими телефонными линиями между собой. По соображениям секретности требуется, чтобы каждую пару точек этой телефонной сети соединяла единственная цепочка линий (возможно, проходящая через несколько телефонных станций). Кроме того, в каждой телефонной станции должно сходиться не менее трех линий (иначе ее строительство не нужно). Институт четных исследований должен подготовить все возможные проекты таких сетей с четными значениями N, а Центр нечетных проблем - с нечетными N. а) Каких проектов получится больше? б) На сколько?

8. Альпинист совершает восхождение на вершину горы высотой 5420 метров. За первый час он преодолел 800 метров подъема, а затем за каждый последующий час преодоленная им высота уменьшалась на 50 метров. Сеансы связи с базовым лагерем были предусмотрены в начале каждого часа. Через сколько часов после начала восхождения альпинист сообщит о покорении вершины?

9. В равнобочной трапеции основания равны 8 см и 12 см соответственно, а длина отрезка, соединяющего точку пересечения диагоналей с серединой боковой стороны трапеции, равна 6 см. Найдите угол между диагональю и основанием трапеции.

Предложения интернет-магазинов

Задачи по физике для поступающих в вузы

Автор(ы): Бендриков Григорий, Буховцев Борис Борисович, Мякишев Геннадий Яковлевич, Керженцев В.   Издательство: Физматлит, 2015 г.

Цена: 713 руб.   Купить

Содержит задачи в рамках вступительных экзаменов по физике из числа предлагавшихся в течение ряда лет на различных факультетах Московского государственного университета. К каждой теме даны краткие указания, касающиеся общей методики решения задач, и основные формулы, используемые при решении. Подробные решения приведены для методически наиболее важных задач. Для слушателей подготовительных отделений вузов, учащихся средних общеобразовательных и профессиональных школ, а также лиц, занимающихся самообразованием. 11-е издание, стереотипное.


Пособие по химии для поступающих в вузы

Автор(ы): Хомченко Гавриил Платонович   Издательство: Новая волна, 2015 г.

Цена: 213 руб.   Купить

В пособии освещены все вопросы приемных экзаменов по химии. Для лучшего усвоения курса химии приведены некоторые дополнительные сведения. После каждой главы даются типовые задачи с решениями и задачи для самостоятельной работы. Книга предназначена поступающим в вузы. Она также может быть рекомендована преподавателям химии при подготовке учащихся к сдаче выпускных экзаменов за курс средней школы. 4 - е издание, исправленное и дополненное


Решение алгебраических и иррациональных уравнений и неравенств

Автор(ы): Александрова О. В., Семенов Ю. С.   Издательство: Илекса, 2013 г.

Цена: 82 руб.   Купить

В учебном пособии представлены основные методы и приёмы решения алгебраических и иррациональных уравнений и неравенств, а также уравнений и неравенств с модулями. Примеры подобраны из вариантов вступительных экзаменов, ЕГЭ, математических олимпиад и приводятся в порядке возрастания сложности. Также предложены задачи для самостоятельного решения с ответами. Учебное пособие рассчитано на широкий круг читателей, включая учеников классов с углубленным изучением математики, а также учителей.


Сборник задач по математике для поступающих в вузы

Автор(ы): Норин Александр Владимирович, Старков Сергей Николаевич, Петрас Станислав Вацлавович, Родина Татьяна Васильевна, Рыжков Александр Евгеньевич, Тимофеева Галина Васильевна   Издательство: Питер, 2010 г.  Серия: Учебное пособие

Цена: 94 руб.   Купить

Сборник составлен в соответствии с программой вступительных экзаменов по математике технических вузов и соответствует уровню требований, предъявляемых к абитуриентам на письменных вступительных испытаниях. Материалы сборника могут быть использованы преподавателями курсов довузовской подготовки в технических вузах, учителями школ, а также абитуриентами для самостоятельной подготовки к вступительным экзаменам по математике.