x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
Задачи с параметрами, Координатно-параметрический метод, Моденов В.П., 2007

Задачи с параметрами, Координатно-параметрический метод, Моденов В.П., 2007

Задачи с параметрами, Координатно-параметрический метод, Моденов В.П., 2007.

    Книга написана профессором Московского государственного университета им. М.В. Ломоносова и предназначена для учащихся общеобразовательных учреждений, готовящихся к вступительным экзаменам по математике в ВУЗ.
Рассматривается метод аналитической геометрии, названный автором координатно-параметрическим, который позволяет эффективно решать широкий класс задач с параметрами, составляющих неотъемлемую и наиболее трудную часть экзаменационных заданий.
Метод иллюстрируется примерами оригинального решения задач, предлагавшихся на вступительных экзаменах по математике в МГУ.

Экзаменационные задачи с параметрами [1—6].
КП-метод иллюстрируется на примерах решения задач из вариантов вступительных экзаменов по математике в МГУ им. М.В. Ломоносова. Как правило, это задачи повышенной сложности. Универсальность предлагаемого метода позволяет решить достаточно широкий класс таких задач.

Даны некоторые применения КП-метода для решения текстовых задач на движение (где роль параметра играет время), различного типа уравнений и неравенств, содержащих параметр, задач с целочисленными значениями координат и параметров, а также задач на логическое отрицание.

Текстовые задачи на движение решаются с использованием методики теоретической механики, записывая уравнение движения для каждого его участника. Эти уравнения связывают координаты движущегося тела со временем, зависимость между которыми достаточно наглядно иллюстрируется на КП-плоскости, что позволяет достаточно просто проводить математическую постановку соответствующей текстовой задачи.

Задачи, связанные с решением уравнении и неравенств, содержащих параметр, заменяются равносильными, допускающими простое решение на КП-плоскости. Здесь с успехом используются предлагаемые алгоритмы, логические схемы и их реализации.

Задачи с целочисленными значениями координат и параметров решаются с использованием следующей идеи. Область КП-плоскости с искомыми целочисленными значениями координат и параметра покрывается координатной (например, прямоугольной) сеткой конечных размеров, в узлах которой координата и параметр принимают целочисленные значения. Затем проверкой устанавливается, какие из конечного числа целочисленных значений в узлах сетки принадлежат покрываемой области КП-плоскости, то есть удовлетворяют условию задачи.

СОДЕРЖАНИЕ
Введение 4
§ 1. Рациональные алгебраические уравнения с параметрами 16
§ 2. Рациональные алгебраические неравенства с параметрами 59
§ 3. Иррациональные уравнения и неравенства с параметрами 107
§ 4. Показательные и логарифмические уравнения с параметрами 149
§ 5. Показательные и логарифмические неравенства с параметрами 171
§ 6. Тригонометрические уравнения и неравенства с параметрами 213
§ 7. Различные трансцендентные уравнения и неравенства с параметрами 250
§ 8. Задачи на движение 269
Заключение 286
Список литературы 287.

Предложения интернет-магазинов

Задачи с параметрами. Иррациональные уравнения

Автор(ы): Локоть Владимир Владимирович   Издательство: АРКТИ, 2010 г.  Серия: Абитуриент: Готовимся к ЕГЭ

Цена: 138 руб.   Купить

В пособии приведены решения около 100 задач с параметрами (иррациональные уравнения и неравенства, системы, задачи с модулем). Пособие адресовано учителям, студентам, учащимся старших классов. Материал может быть использован при подготовке к единому государственному экзамену.


Задачи с параметрами. Применение свойств функций, преобразование неравенств

Автор(ы): Локоть Владимир Владимирович   Издательство: АРКТИ, 2010 г.  Серия: Абитуриент: Готовимся к ЕГЭ

Цена: 137 руб.   Купить

В первой части пособия рассмотрены задачи с параметрами, при решении которых используется область определения, множество значений, ограниченность и монотонность функций. Во второй части пособия рассмотрен целый ряд примеров, для решения которых удобно применять равносильные преобразования, быстро приводящие исходные неравенства (неравенства с модулем, иррациональные, показательные, логарифмические, тригонометрические) к рациональным неравенствам. Пособие адресовано учителям, студентам, учащимся 11-го класса. Материал может быть полезен при подготовке к Единому государственному экзамену (ЕГЭ).


Задачи с параметрами на экзаменах

Автор(ы): Шахмейстер Александр Хаймович   Издательство: Виктория Плюс, 2016 г.  Серия: Математика. Элективные курсы

Цена: 295 руб.   Купить

Данное пособие является продолжением книги "Уравнения и неравенства с параметрами" и предназначено для углубленного изучения школьного курса математики, содержит большое количество разноуровневого тренировочного материала. В книге представлена программа для проведения элективных курсов в профильных и предпрофильных классах. Пособие адресовано широкому кругу учащихся, абитуриентов, студентов педагогических вузов, учителей. 5-е издание.


Задачи Санкт-Петербургской олимпиады школьников по математике 2007 года

  Издательство: BHV, 2007 г.

Цена: 97 руб.   Купить

Книга предназначена для школьников, учителей, преподавателей математических кружков и просто любителей математики. Читатель найдет в ней задачи Санкт-Петербургской олимпиады школьников по математике 2007 года, а также открытой олимпиады ФМЛ № 239, которая, не будучи туром Санкт-Петербургской олимпиады, по характеру задач, составу участников и месту проведения является прекрасным дополнением к ней. Все задачи приведены с подробными решениями, условия и решения геометрических задач сопровождаются рисунками. В качестве дополнительного материала читатель найдет исследовательскую задачу, предлагавшуюся на XVIII Летней конференции Турнира городов, статью о применении линейной алгебры в комбинаторных задачах и заметку об исследовании олимпиадного культа. Составители: Ф.В. Петров, К.П. Кохась, С.Л. Берлов.