x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
ВИДЕОКУРСЫ
Задачи с параметрами, Методическое пособие по математике для подготовительных курсов, Петрович А.Ю., 2008

Задачи с параметрами, Методическое пособие по математике для подготовительных курсов, Петрович А.Ю., 2008

Задачи с параметрами, Методическое пособие по математике для подготовительных курсов, Петрович А.Ю., 2008.

По материалам занятий, проводимых на подготовительных курсах в Московском физико-техническом институте (МФТИ), приведены на доступном уровне основные методы решения алгебраических уравнений и неравенств. Большинство разобранных примеров и задач для самостоятельного решения предлагались на письменных вступительных экзаменах в МФТИ.

Для абитуриентов, слушателей подготовительных курсов, старшеклассников.

Содержание.
1. Задачи, решаемые аналитическими методами.

2. Применение графического метода.
3. Линейные системы с параметрами.

Решение задач с параметром.
Если уравнение, неравенство или система содержат параметр (а иногда и несколько параметров) то, как правило, требуется не найти все решения при различных значениях параметра, а качественно исследовать поведение решений (например, ответить на вопрос: при каких значениях параметра уравнение имеет ровно одно или ровно два решения и т.д.). В этих задачах главное - логическая, а не вычислительная, сторона решения.

Решение задач с параметром иногда очень упрощается, если применить графические соображения. При этом график часто даёт вполне доказательный ответ на вопрос о количестве корней уравнения, их взаимном расположении и т. д. Для получения окончательного ответа остается найти координаты точек пересечения некоторых графиков, угловые коэффициенты некоторых прямых и т. д.

Рассмотрим линейную систему двух уравнений с двумя неизвестными:
                        А1х + В1у+ С1 = 0
                        А1х + В1у + С1=0,
где А1² + В1² > 0;   А1² + B1² > 0. График каждого из уравнений системы - прямая линия на плоскости.  
Поэтому возможны три случая:
1) обе прямые пересекаются в единственной точке, т. е. система имеет единственное решение;
2) прямые параллельны, т. е. система не имеет решений;
3) прямые совпадают, т. е. система имеет бесконечно много решений.
Если система содержит параметр, то, в зависимости от значения параметра, может иметь место один из трёх случаев. При решении конкретных задач тяжелее всего воспринимается и даёт наибольшее число ошибок именно третий случай.

Предложения интернет-магазинов

Задачи с параметрами. Иррациональные уравнения

Автор(ы): Локоть Владимир Владимирович   Издательство: АРКТИ, 2010 г.  Серия: Абитуриент: Готовимся к ЕГЭ

Цена: 138 руб.   Купить

В пособии приведены решения около 100 задач с параметрами (иррациональные уравнения и неравенства, системы, задачи с модулем). Пособие адресовано учителям, студентам, учащимся старших классов. Материал может быть использован при подготовке к единому государственному экзамену.


Задачи с параметрами на экзаменах

Автор(ы): Шахмейстер Александр Хаймович   Издательство: Виктория Плюс, 2016 г.  Серия: Математика. Элективные курсы

Цена: 295 руб.   Купить

Данное пособие является продолжением книги "Уравнения и неравенства с параметрами" и предназначено для углубленного изучения школьного курса математики, содержит большое количество разноуровневого тренировочного материала. В книге представлена программа для проведения элективных курсов в профильных и предпрофильных классах. Пособие адресовано широкому кругу учащихся, абитуриентов, студентов педагогических вузов, учителей. 5-е издание.


Математика. Тригонометрия. Учебное пособие для подготовительных отделений и курсов вузов

Автор(ы): Александрова Ольга Владимировна, Сагомонян Елена Артуровна, Семенов Юрий Станиславович   Издательство: Илекса, 2016 г.  Серия: Поступаем в высшую школу

Цена: 121 руб.   Купить

В учебном пособии представлены основные методы и приёмы решения тригонометрических уравнений и неравенств, доказательств тригонометрических тождеств. Примеры подобраны из вариантов ЕГЭ, вступительных экзаменов, математических олимпиад и приводятся в порядке возрастания сложности. Предложены задачи для самостоятельного решения с ответами. Учебное пособие рассчитано на слушателей подготовительных отделений и курсов вузов, абитуриентов, занимающихся самостоятельно, учеников старших классов, учителей, преподавателей довузовской подготовки.


Задачи с параметрами. Применение свойств функций, преобразование неравенств

Автор(ы): Локоть Владимир Владимирович   Издательство: АРКТИ, 2010 г.  Серия: Абитуриент: Готовимся к ЕГЭ

Цена: 137 руб.   Купить

В первой части пособия рассмотрены задачи с параметрами, при решении которых используется область определения, множество значений, ограниченность и монотонность функций. Во второй части пособия рассмотрен целый ряд примеров, для решения которых удобно применять равносильные преобразования, быстро приводящие исходные неравенства (неравенства с модулем, иррациональные, показательные, логарифмические, тригонометрические) к рациональным неравенствам. Пособие адресовано учителям, студентам, учащимся 11-го класса. Материал может быть полезен при подготовке к Единому государственному экзамену (ЕГЭ).