x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
Математический анализ в вопросах и задачах, Бутузов В.Ф., Крутицкая Н.Ч., Медведев Г.Н., Шишкин А.А., 2002

Математический анализ в вопросах и задачах, Бутузов В.Ф., Крутицкая Н.Ч., Медведев Г.Н., Шишкин А.А., 2002

Математический анализ в вопросах и задачах, Бутузов В.Ф., Крутицкая Н.Ч., Медведев Г.Н., Шишкин А.А., 2002.

Пособие охватывает все разделы курса математического анализа функций одной и нескольких переменных. По каждой теме кратко излагаются основные теоретические сведения и предлагаются контрольные вопросы; приводятся решения стандартных и нестандартных задач; даются задачи и упражнения для самостоятельной работы с ответами и указаниями.

ОГЛАВЛЕНИЕ
Предисловие
ГЛАВА I ВЕЩЕСТВЕННЫЕ ЧИСЛА
§ 1. Сравнение вещественных чисел
§ 2. Точные грани числового множества. Применение символов математической логики .
§ 3. Арифметические операции над вещественными числами .
§ 4. Метод математической индукции
ГЛАВА II ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ
§ 1. Ограниченные и неограниченные последовательности .
§ 2. Бесконечно малые и бесконечно большие последовательности .
§ 3. Свойства сходящихся последовательностей.
§ 4. Замечательные пределы
§ 5. Монотонные последовательности
§ 6. Предельные точки
§ 7. Фундаментальные последовательности. Критерий Коши сходимости последовательности
ГЛАВА III ПРЕДЕЛ ФУНКЦИИ. НЕПРЕРЫВНОСТЬ ФУНКЦИИ
§ 1. Предел функции. Теоремы о пределах. Бесконечно большие функции.
§ 2. Непрерывность функции в точке
§ 3. Сравнение бесконечно малых функций. Символ "о малое" и его
§ 4. Вычисление пределов функций с помощью асимптотических формул. Вычисление пределов показательно-степенных функций .
ГЛАВА IV ПРОИЗВОДНЫЕ И ДИФФЕРЕНЦИАЛЫ
§ 1. Производная функции. Правила дифференцирования
§ 2. Дифференциал функции
§ 3. Производные и дифференциалы высших порядков.
ГЛАВА V НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
§ 1. Первообразная и неопределенный интеграл.
§ 2. Простейшие неопределенные интегралы.
§ 3. Метод замены переменной
§ 4. Метод интегрирования по частям.
§ 5. Интегрирование рациональных функций.
§ б. Интегрирование иррациональных функций.
§ 7. Интегрирование тригонометрических функций
ГЛАВА VI ОСНОВНЫЕ ТЕОРЕМЫ О НЕПРЕРЫВНЫХ И ДИФФЕРЕНЦИРУЕМЫХ ФУНКЦИЯХ
§ 1. Теоремы об ограниченности непрерывных функций.
§ 2. Равномерная непрерывность функции
§ 3. Некоторые теоремы о дифференцируемых функциях
§ 4. Правило Лопиталя
§ 5. Формула Тейлора.
ГЛАВА VII ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ
§ 1. Построение графиков явных функций.
§ 2. Исследование плоских кривых, заданных параметрически.
ГЛАВА VIII ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
§ 1. Интегрируемость функции (по Риману) и определенный интеграл
§ 2. Свойства определенного интеграла.
§ 3. Формула Ньютона-Лейбница.
§ 4. Вычисление длин плоских кривых.
§ 5. Вычисление площадей плоских фигур.
§ 6. Вычисление объемов тел
§ 7. Физические приложения определенного интеграла
ГЛАВА IX МЕРА И ИНТЕГРАЛ ЛЕБЕГА
§ 1. Мера множества.
§ 2. Измеримые функции
§ 3. Интеграл Лебега.
ГЛАВА X ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
§ 1. Последовательности точек в m-мерном евклидовом пространстве
§ 2. Предел функции.
§ 3. Непрерывность функции
§ 4. Частные производные и дифференцируемость функции
§ 5. Частные производные и дифференциалы высших порядков § 6. Локальный экстремум функции.
ГЛАВА XI НЕЯВНЫЕ ФУНКЦИИ И ИХ ПРИЛОЖЕНИЯ
§ 1. Неявные функции
§ 2. Зависимость функций.
§ 3. Условный экстремум
§ 4. Замена переменных.
ГЛАВА XII КРАТНЫЕ ИНТЕГРАЛЫ
§ 1. Двойные интегралы.
§ 2. Тройные интегралы.
§ 3. m-кратные интегралы.
ГЛАВА ХIII КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ
§ 1. Криволинейные интегралы первого рода.
§ 2. Криволинейные интегралы второго рода.
§ 3. Формула Грина. Условия независимости криволинейного интеграла второго рода от пути интегрирования
ГЛАВА XIV ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ
§ 1. Площадь поверхности
§ 2. Поверхностные интегралы первого рода.
§ 3. Поверхностные интегралы второго рода.
§ 4. Формула Стокса .
§ 5. Формула Остроградского Гаусса
ГЛАВА XV СКАЛЯРНЫЕ И ВЕКТОРНЫЕ ПОЛЯ
§ 1. Дифференциальные операции в скалярных и векторных полях . .
§ 2. Повторные дифференциальные операции в скалярных и векторных полях .
§ 3. Интегральные характеристики векторных полей.
§ 4. Основные дифференциальные операции векторного анализа в криволинейных ортогональных координатах.
Ответы и указания
Предметный указатель

Примеры.
1. Что такое криволинейные координаты; координатные линии? Какие криволинейные координаты называются ортогональными?

2. Что такое параметры Ламэ? Каков их геометрический смысл?

3. Приведите примеры криволинейных ортогональных координат. Напишите формулы, связывающие прямоугольные координаты: а) с цилиндрическими координатами; б) со сферическими координатами. Изобразите на рисунке координатные линии для цилиндрических и сферических координат.

4. Вычислите параметры Ламэ для цилиндрических и сферических координат двумя способами: а) по формулам для параметров Ламэ; б) используя вид координатных линий и геометрический смысл параметров Ламэ.

5. Напишите с помощью кванторов определение ограниченного снизу множества. Постройте отрицание этого определения, пользуясь правилом построения отрицаний.

6. Дайте определение точной верхней (нижней) грани ограниченного сверху (снизу) множества.

7. Сформулируйте теорему о существовании точных граней числового множества.

8. Докажите единственность точных граней, т. е. что ограниченное сверху (снизу) множество имеет только одну точную верхнюю (нижнюю) грань.

Предложения интернет-магазинов

Информатика в играх и задачах. 1 класс. Методические рекомендации для учителя. ФГОС

Автор(ы): Горячев Александр Владимирович, Волкова Татьяна Олимповна, Горина Ксения Игоревна   Издательство: Баласс, 2012 г.  Серия: Образовательная система "Школа 2100"

Цена: 287 руб.   Купить

Пособие включает описание уроков по курсу "Информатика в играх и задачах" в 1-м классе. Для проведения занятий компьютеры не требуются. Учебник "Информатика в играх и задачах" соответствует Федеральному компоненту государственного стандарта общего образования, является составной частью комплекта учебников Образовательной системы "Школа 2100". 3-е издание, исправленное.


Геометрия. 8 класс. Тематические тесты

Автор(ы): Бутузов Валентин Федорович, Кадомцев Сергей Борисович, Прасолов Виктор Васильевич   Издательство: Просвещение, 2014 г.  Серия: Математика и информатика

Цена: 195 руб.   Купить

Линия УМК "Бутузов В.Ф. (7-9)" Тематические тесты содержат тестовые задания (как правило, по готовым чертежам) в четырёх вариантах двух уровней сложности. Каждый тест включает одну дополнительную задачу повышенной трудности. Тематические тесты предназначены для подготовки к ГИА.


Введение в математический анализ

Автор(ы): Шахмейстер Александр Хаймович   Издательство: Виктория Плюс, 2015 г.  Серия: Математика. Элективные курсы

Цена: 574 руб.   Купить

Данное пособие предназначено для углубленного изучения школьного курса математики, содержит большое количество разноуровневого тренировочного материала. В книге представлена программа для проведения элективных курсов в профильных и предпрофильных классах. Пособие адресовано широкому кругу учащихся, абитуриентов, студентов педагогических вузов, учителей. 2-е издание.


Геометрия. 9 класс. Поурочные разработки к учебному комплекту Л. С. Атанасяна и др.

Автор(ы): Гаврилова Нина Федоровна   Издательство: Вако, 2016 г.  Серия: В помощь школьному учителю

Цена: 191 руб.   Купить

Настоящее пособие представляет собой подробное поурочное планирование по геометрии для 9 класса общеобразовательных учреждений. Пособие ориентировано, прежде всего, на работу с базовым учебником: Л. С. Атанасян, В. Ф. Бутузов и др. Геометрия: 7-9 кл.- М.: Просвещение, 2002-2005. Особенностью пособия является дифференцированный подход к планированию, позволяющий проводить уроки в классах разного уровня подготовки - от классов гуманитарного профиля и коррекционных классов до специализированных физико-математических классов. Пособие полностью автономно и не требует использования каких-либо дополнительных материалов. Также может быть использовано учителями, работающими с другими учебниками по геометрии, например, А. Г. Погорелова.