x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
ВИДЕОКУРСЫ
Сборник задач по математике для втузов, Часть 3, Ефимова А.В., Поспелова А.С., 2002

Сборник задач по математике для втузов, Часть 3, Ефимова А.В., Поспелова А.С., 2002

Сборник задач по математике для втузов, Часть 3, Ефимова А.В., Поспелова А.С., 2002.
 
   Содержит задачи по специальным разделам математического анализа, которые в различных наборах и объемах изучаются в технических вузах и университетах. Сюда включены такие разделы, как векторный анализ, ряды и их применение, элементы теории функций комплексной переменной, операционное исчисление, интегральные уравнения, уравнения в частных производных, а также методы оптимизации. Краткие теоретические сведения, снабженные большим количеством разобранных примеров, позволяют использовать сборник для всех видов обучения. Для студентов высших технических учебных заведений.

Примеры.
Найти, с какой силой масса М, равномерно распределенная вдоль окружности х2 + у2 = а2, z = с, притягивает точечную массу га, помещенную в начале координат.

Найти массу четверти окружности х2 + у2 = r2, расположенной в первом квадранте, если плотность ее в каждой точке пропорциональна абсциссе этой точки (коэффициент пропорциональности а).

Доказать, что поток радиус-вектора r через любую кусочно гладкую замкнутую поверхность в направлении внешней нормали равен утроенному объему тела, ограниченного этой поверхностью.

ОГЛАВЛЕНИЕ
ПРЕДИСЛОВИЕ ТИТУЛЬНЫХ РЕДАКТОРОВ 7
ОТ АВТОРОВ 8
Глава 11. Векторный анализ 9
§ 1. Скалярные и векторные поля. Градиент 9
1. Геометрические характеристики скалярных и векторных полей. 2. Производная по направлению и градиент скалярного поля
§ 2. Криволинейные и поверхностные интегралы 13
1. Криволинейный интеграл 1-го рода. 2. Поверхностный интеграл 1-го рода. 3. Криволинейный интеграл 2-го рода. 4. Поверхностный интеграл 2-го рода
§ 3. Соотношения между различными характеристиками скалярных и векторных полей 28
1. Дивергенция векторного поля и теорема Гаусса-Остроградского. 2. Вихрь векторного поля. Теорема Стокса. 3. Оператор Гамильтона и его применение. 4. Дифференциальные операции 2-го порядка
§ 4. Специальные виды векторных полей 35
1. Потенциальное векторное поле. 2. Соленоидальное поле. 3. Лапласово (или гармоническое) поле
§ 5. Применение криволинейных координат в векторном анализе 41
1. Криволинейные координаты. Основные соотношения. 2. Дифференциальные операции векторного анализа в криволинейных координатах. 3. Центральные, осевые и осесимметрические скалярные поля
Глава 12. Ряды и их применение 47
§ 1. Числовые ряды 47
1. Сходимость ряда. Критерий Коши. 2. Абсолютная и условная сходимость. Признаки абсолютной сходимости. 3. Признаки условной сходимости
§ 2. Функциональные ряды 61
1. Область сходимости функционального ряда. 2. Равномерная сходимость. 3. Свойства равномерно сходящихся рядов
§ 3. Степенные ряды 68
1. Область сходимости и свойства степенных рядов. 2. Разложение функций в ряд Тейлора. 3. Теорема единственности. Аналитическое продолжение
§ 4. Применение степенных рядов 80
1. Вычисление значений функций. 2. Интегрирование функций. 3. Нахождение сумм числовых рядов. Убыстрение сходимости. 4. Интегрирование дифференциальных уравнений с помощью рядов. 5. Уравнение и функции Бесселя
§ 5. Ряды Лорана 93
1. Ряды Лорана. Теорема Лорана. 2. Характер изолированных особых точек
§ 6. Вычеты и их применение 100
1. Вычет функции и его вычисление. 2. Теоремы о вычетах и их применение к вычислению контурных интегралов. 3. Применение вычетов к вычислению определенных интегралов. 4. Принцип аргумента
§ 7. Ряды Фурье. Интеграл Фурье 111
1. Разложение функций в тригонометрические ряды Фурье. 2. Двойные ряды Фурье. 3. Интеграл Фурье. 4. Спектральные характеристики ряда и интеграла Фурье. 5. Дискретное преобразование Фурье (ДПФ)
Глава 13. Теория функций комплексной переменной 125
§ 1. Элементарные функции 125
1. Понятие функции комплексной переменной. 2. Основные элементарные функции комплексной переменной. 3. Предел и непрерывность функции комплексной переменной
§ 2. Аналитические функции. Условия Коши-Римана 134
1. Производная. Аналитичность функции. 2. Свойства аналитических функций
§ 3. Конформные отображения 140
1. Геометрический смысл модуля и аргумента производной. 2. Конформные отображения. Линейная и дробно-линейная функции. 3. Степенная функция. 4. Функция Жуковского. 5. Показательная функция. 6. Тригонометрические и гиперболические функции
§ 4. Интеграл от функции комплексной переменной 152
1. Интеграл по кривой и его вычисление. 2. Теорема Коши. Интегральная формула Коши
Глава 14. Операционное исчисление 163
§ 1. Преобразование Лапласа 163
1. Определение и свойства преобразования Лапласа. 2. Расширение класса оригиналов
§ 2. Восстановление оригинала па изображению 172
1. Элементарный метод. 2. Формула обращения. Теоремы разложения
§ 3. Применения операционного исчисления 179
1. Решение линейных дифференциальных уравнений и систем уравнений с постоянными коэффициентами. 2. Решение линейных интегральных и интегро-дифференциальных уравнений. 3. Интегрирование линейных уравнений в частных производных. 4. Вычисление несобственных интегралов. 5. Суммирование рядов. 6. Применение операционного исчисления при расчете электрических цепей
§ 4. Дискретное преобразование Лапласа и его применение 198
1. Z-преобразование и дискретное преобразование Лапласа. 2. Решение разностных уравнений
Глава 15. Интегральные уравнения 210
§1. Интегральные уравнения Вольтерра 210
1. Уравнения Вольтерра 2-го рода: основные понятия, связь с дифференциальными уравнениями. 2. Метод последовательных приближений. Решение с помощью резольвенты. 3. Уравнения Вольтерра 2-го рода типа свертки. 4. Уравнения Вольтерра 1-го рода
§ 2. Интегральные уравнения Фредгольма 232
1. Основные понятия. Метод последовательных приближений и резольвента для уравнений Фредгольма 2-го рода. 2. Решение уравнений Фредгольма 2-го рода с вырожденным ядром. 3. Характеристические числа и собственные функции. Теоремы Фредгольма. 4. Уравнения Фредгольма 2-го рода с симметричным ядром
§ 3. Численные методы решения интегральных уравнений 259
Глава 16. Уравнения в частных производных 267
§ 1. Основные задачи и уравнения математической физики 267
1. Вывод уравнений и постановка задач математической физики. 2. Приведение уравнений к каноническому виду
§ 2. Аналитические методы решения уравнений математической физики 275
1. Метод Даламбера. 2. Гильбертовы пространства. Ортогональные системы. 3. Ортогональные ряды. 4. Метод Фурье решения уравнений математической физики
§ 3. Приближенные методы решения дифференциальных уравнений в частных производных 301
1. Основные понятия метода сеток. 2. Численное решение краевых задач методом сеток
Глава 17. Методы оптимизации 323
§ 1. Численные методы минимизации функций одной переменной 323
1. Основные понятия. Прямые методы минимизации. 2. Методы минимизации, основанные на использовании производных функции
§ 2. Безусловная минимизация функций многих переменных 340
1. Выпуклые множества и выпуклые функции. 2. Методы безусловной минимизации, основанные на вычислении первых производных функции. 3. Методы безусловной минимизации, использующие вторые производные функции
§ 3. Линейное программирование 353
1. Постановки задач линейного программирования. Графический метод решения. 2. Симплекс-метод решения задачи линейного программирования. 3. Целочисленное линейное программирование
§ 4. Нелинейное программирование 386
1. Задачи, сводящиеся к линейному программированию. 2. Методы возможных направлений. 3. Градиентные методы решения задач нелинейного программирования. 4. Методы штрафных и барьерных функций
§ 5. Дискретное динамическое программирование 419
§ 6. Вариационное исчисление 435
1. Предварительные сведения. Простейшая задача вариационного исчисления. 2. Обобщения простейшей задачи вариационного исчисления. 3. Задачи с подвижными границами. 4. За¬дачи на условный экстремум. 5. Прямые методы вариационного исчисления
ОТВЕТЫ И УКАЗАНИЯ 467
СПИСОК ЛИТЕРАТУРЫ 575.

Предложения интернет-магазинов

213 задач и примеров по математике для 3 класса

Автор(ы): Ефимова Анна Валерьевна, Гринштейн Мария Рахмиэльевна   Издательство: Литера, 2016 г.  Серия: Начальная школа

Цена: 111 руб.   Купить

В книге подобран разнообразный практический материал для тренировки вычислительных навыков. Решение примеров, задач и упражнений различных типов поможет в развитии логического мышления и сообразительности учащихся. Пособие состоит из разнообразных заданий, соответствующих учебной программе и общеобразовательному стандарту. Задания рассчитаны на различные уровни подготовленности школьников, многие из них построены на занимательном материале. В конце книги приведены ответы.


214 задач и примеров по математике для 4 класса

Автор(ы): Ефимова Анна Валерьевна, Гринштейн Мария Рахмиэльевна   Издательство: Литера, 2016 г.  Серия: Начальная школа

Цена: 110 руб.   Купить

В книге подобран разнообразный практический материал для тренировки вычислительных навыков. Решение примеров, задач и упражнений различных типов поможет в развитии логического мышления и сообразительности учащихся. Пособие состоит из разнообразных заданий, соответствующих учебной программе и общеобразовательному стандарту. Задания рассчитаны на различные уровни подготовленности школьников, многие из них построены на занимательном материале. В конце книги приведены ответы.


Сборник задач по математике для поступающих во вузы

Автор(ы): Егерев Виктор Константинович, Зайцев Владимир Валентинович, Кордемский Борис Анастасьевич   Издательство: Мир и образование, 2017 г.

Цена: 304 руб.   Купить

Сборник составлен в соответствии с программой по математике для поступающих во втузы. Он состоит из двух частей: "Арифметика, алгебра, геометрия" (часть I); "Алгебра, геометрия (дополнительные задачи). Начала анализа. Координаты и векторы" (часть II). Все задачи части I разбиты на три группы по уровню сложности. В каждой главе приведены сведения справочного характера и примеры решения задач. Ко всем задачам даны ответы. Пособие адресовано учащимся старших классов, абитуриентам и учителям математики. Под ред. М. И. Сканави. 6-е издание.


Сборник задач по математике для поступающих в вузы

Автор(ы): Сканави Марк Иванович, Зайцев Владимир Валентинович, Егерев Виктор Константинович   Издательство: АСТ, 2016 г.  Серия: Учебник, проверенный временем

Цена: 415 руб.   Купить

Сборник составлен в соответствии с программой по математике для поступающих в вузы. Он состоит из двух частей: "Арифметика, алгебра, геометрия" (часть I); "Алгебра, геометрия (дополнительные задачи). Начала анализа. Координаты и векторы" (часть II). Все задачи части I разбиты на три группы по уровню сложности. В каждой главе приведены сведения справочного характера и примеры решения задач. Ко всем задачам даны ответы. Пособие адресовано учащимся старших классов, абитуриентам и учителям математики. 6-е издание.