x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
ВИДЕОКУРСЫ
Теория вероятностей, Задачи с решениями, Золотаревская Д.И., 2003

Теория вероятностей, Задачи с решениями, Золотаревская Д.И., 2003

Теория вероятностей, Задачи с решениями, Золотаревская Д.И., 2003.

  Учебное пособие охватывает все разделы теории вероятностей, входящие в учебные программы по курсу высшей математики для студентов ВУЗов, обучающихся по экономическим, биологическим, сельскохозяйственным и ряду технических специальностей ВУЗов.
В каждой главе приведены краткие сведения справочного характера и типовые задачи с подробно разобранными решениями. Всего в книге приведено 135 задач и решений к ним. К ряду задач даны иллюстрации, помогающие понять ход решения.
    Пособие поможет овладеть навыками самостоятельного решения задач по теории вероятностей.
Предназначается для студентов ВУЗов, обучающихся по экономическим, биологическим, сельскохозяйственным, инженерным и ряду других специальностей. Может быть полезно преподавателям ВУЗов и лицам, изучающим теорию вероятностей самостоятельно и применяющим вероятностные методы при решении практических задач.

   В программе для компьютера, написанной в Турбо Паскале, использована функция Random(x)t генерирующая целые случайные числа
от 1 до х. Какова вероятность того, что при выполнении этой функции появится число, делящееся на 5, если х = 100?
Решение. Обозначим событие: А - при значении х = 100 появится число, делящееся на 5. Найдем вероятность события А, применив формулу (1).
При значении x = 100 может появиться любое из 100 имеющихся целых чисел, следовательно, общее число исходов испытания п = 100.
Для того, чтобы найти число исходов испытания, благоприятствующих событию A, воспользуемся признаком делимости чисел на 5. На 5 делятся числа, оканчивающиеся цифрами 0 или 5. Среди 100 целых чисел есть 20 таких чисел; следовательно, число исходов испытания, благоприятствующих событию А, равно т = 20.

ОГЛАВЛЕНИЕ
Глава 1. Определение вероятности события 5

1.1. Классическое определение вероятности 5
1.2. Относительная частота и статистическая вероятность 22
1.3. Геометрические вероятности 24
Глава 2. Основные теоремы теории вероятностей 31
2.1. Теоремы сложения и умножения вероятностей 31
2.2. Формула полной вероятности 56
2.3. Формула Бейеса 63
Глава 3. Повторные независимые испытания 71
3.1. Формула Бернулли 71
3.2. Наивероятнейшее число появлений события в независимых испытаниях 80
3.3. Асимптотическая формула Лапласа 82
3.4. Формула Пуассона 85
3.5. Интегральная формула Лапласа 86
3.6. Отклонение относительной частоты от постоянной вероятности в независимых испытаниях 90
Глава 4. Случайные величины и их законы распределения 93
4.1. Ряд, многоугольник и функция распределения дискретной случайной величины 93
4.2. Числовые характеристики дискретных случайных величин 109
4.3. Биномиальный закон распределения 117
4.4. Закон Пуассона 124
4.5. Функция распределения и плотность распределения вероятностей непрерывной случайной величины 130
4.6. Числовые характеристики непрерывных случайных величин 142
4.7. Закон равномерной плотности 146
4.8. Нормальный закон распределения 151
4.9. Показательный закон распределения 158
Приложение. Таблицы 163
Список литературы 166

Предложения интернет-магазинов

События. Вероятности. Статистическая обработка данных. Доп. параграфы к курсу алгебры 7-9 классов

Автор(ы): Мордкович Александр Григорьевич, Семенов Павел Владимирович   Издательство: Мнемозина, 2009 г.  Серия: Математика

Цена: 168 руб.   Купить

Пособие предназначено для ознакомления учащихся с элементами теории вероятностей и математической статистики. На большом количестве примеров изложены начальные понятия, идеи и методы комбинаторики, теории вероятностей и статистики. Даны задачи с решениями и ответами, а также упражнения с возрастающей степенью сложности для самостоятельной работы школьников (включая ответы). 6-е издание.


Физика. 10-11 классы. Сборник задач и заданий с ответами и решениями

Автор(ы): Козел Станислав Миронович, Коровин Владимир Анатольевич, Орлов Владимир Алексеевич   Издательство: Мнемозина, 2004 г.  Серия: Физика

Цена: 316 руб.   Купить

В сборник включены задачи, предлагавшиеся на ежегодных Международных олимпиадах школьников по физике (1985-2003). Ознакомление с условиями и решениями задач полезно не только для школьников, готовящихся участвовать в физической олимпиадах разного уровня, но и для учащихся школ и классов с углубленным изучением предмета, а также для студентов физических факультетов педагогических вузов. В предисловии приведены списки отечественных участников и дипломантов олимпиад с 1968 по 2003 г. Допущено Министерством образования и науки Российской Федерации. 2-е издание, дополненное.


Математика. Теория вероятностей и дискретная математика: Элементы теории, решение задач

Автор(ы): Баюк Олег Александрович, Маркарян Елена Георгиевна   Издательство: Просвещение, 2013 г.  Серия: Сложные темы ЕГЭ

Цена: 377 руб.   Купить

Пособие предназначено учащимся общеобразовательных учреждений (школ, гимназий, колледжей) для углублённого изучения теории вероятностей и связанных с ней разделов дискретной математики (теории множеств, математической логики, комбинаторики, теории графов и математической статистики) в целях успешной сдачи ЕГЭ по математике. В пособии изложены основные теоретические сведения, необходимые для решения задач, приводятся решения типичных заданий ЕГЭ, а также содержатся задания для самостоятельной работы (с ответами, указаниями к решению или решениями). Книга может быть использована в качестве сборника задач на подготовительных курсах, факультативных занятиях, при самостоятельной подготовке к поступлению в вуз и при последующем обучении в вузе.


Математика. 8-11 класс. Международная олимпиада молодежи. Сборник задач с решениями

Автор(ы): Шагин Вадим Львович   Издательство: Вита-Пресс, 2015 г.

Цена: 238 руб.   Купить

Сборник содержит задачи, предлагавшиеся на MOM в 2014/15 учебном году. Все задачи даны с подробными решениями.