x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
ВИДЕОКУРСЫ
ЕГЭ по математике, Задания группы C, Смоляков А.Н., Сидельников В.И., 2013

ЕГЭ по математике, Задания группы C, Смоляков А.Н., Сидельников В.И., 2013

ЕГЭ по математике, Задания группы C, Смоляков А.Н., Сидельников В.И., 2013.

    При подготовке к Единому государственному экзамену по математике особое внимание следует уделять заданиям группы С. Решение именно этих заданий является условием получения высоких баллов на ЕГЭ. Пособие содержит типовые задания по темам, соответствующим уровню С1-С6. Кратко излагается теоретический материал, приводятся необходимые формулы, рассматриваются решения наиболее типичных заданий несколькими способами, предлагаются упражнения (с ответами) для самостоятельного решения. Большинство заданий авторские, некоторые взяты из диагностических и экзаменационных работ 2011-2012 годов. Адресовано учителям математики и учащимся 10-11 классов.

Примеры.
В правильной треугольной пирамиде SABC, сторона основания которой равна 2, а боковое ребро равно 3, точки M и N - середины ребер SC и АВ соответственно. Найдите угол между прямой MN и плоскостью основания пирамиды.

Существует ли арифметическая прогрессия с натуральными членами, в которой отношение первого члена к разности также является натуральным числом, а шестой член, член с номером m и двадцатый член соответственно образуют геометрическую прогрессию?

Дана числовая последовательность, каждый член которой, начиная с третьего, равен сумме двух предыдущих членов. Сложили n членов этой последовательности. Может ли полученная сумма быть числом четным, если второй член этой последовательности число четное, а предпоследний - нечетное число?

Каждое из чисел 1; -2; -3; 4; -5; 7; -8; 9; 10; -11 по одному записывается на карточках. Карточки переворачиваются и перемешиваются. На их чистых сторонах пишут по одному каждое из чисел: 1; -2; -3; 4; -5; 7; -8; 9; 10; 1. После этого числа на каждой карточке складывают» а полученные десять сумм перемножают.
а) Может ли в результате получиться число 0?
б) Может ли в результате получиться число 1?
в) Какое наименьшее целое неотрицательное число может получиться в результате?

Содержание
Введение 3
Задания уровня С1.
ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ И СИСТЕМЫ УРАВНЕНИЙ
1.1. Формулы тригонометрии 4
1.2. Типичные задания уровня С1 7
1.3. Отбор корней тригонометрических уравнений 8
Задания уровня С2.
ГЕОМЕТРИЯ
2.1. Расстояние от точки до прямой 16
2.2. Угол между прямой и плоскостью 21
2.3. Угол между двумя плоскостями 25
2.4. Угол между скрещивающимися прямыми 32
2.5. Расстояние между скрещивающимися прямыми 36
2.6. Расстояние от точки до плоскости 40
Задания уровня С3.
ПОКАЗАТЕЛЬНЫЕ И ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА
Показательные уравнения и неравенства
3.1. Уравнения вида аf(х) = 1 45
3.2. Уравнения вида (g(x))f(x) = 1 45
3.3. Уравнения вида аf(х) = bf(x) 46
3.4. Уравнения вида af(x) = ag(х) 46
3.5. Уравнения вида a0mnx+c1 + a1mnx+c2 +...+anmnx+cn = F 47
3.6. Уравнения вида ma2f(x) + naf(x) + P = 0 48
3.7. Уравнения вида ma2f(x) + naf(x)*bf(x) + q*b2f(x) = 0 49
3.8. Решение показательных неравенств с использованием свойств показательной функции 51
3.9. Решение показательных неравенств методом интервалов 52
Логарифмические уравнения и неравенства
3.10. Определения, основные свойства логарифмов, формулы 55
3.11. Задания на применение логарифмических свойств и формул 56
Различные варианты решения логарифмических уравнений
3.12. Решение уравнений, основанное на определении логарифма 59
3.13. Уравнения, решаемые логарифмированием 61
3.14. Логарифмические уравнения, решаемые потенцированием 62
3.15. Решение уравнений вида f(log g(x)) = 0, где f(x) - некоторая функция 65
3.16. Решение логарифмических уравнений с помощью формул перехода от одного основания логарифма к другому 66
3.17. Уравнения, содержащие логарифм в показателе степени 69
3.18. Решение уравнений, основанное на применении некоторых логарифмических тождеств 70
Различные варианты решения логарифмических неравенств
3.19. Простейшие логарифмические неравенства 72
3.20. Решение логарифмических неравенств методом интервалов 75
3.21. Об одном способе решения логарифмических неравенств 77
3.22. Решение логарифмических уравнений и неравенств с применением подстановок 78
3.23. Различные виды неравенств и их решение 79
Задания уровня С4.
ГЕОМЕТРИЧЕСКИЕ ЗАДАНИЯ (ПЛАНИМЕТРИЯ)
4.1. Формулы площади треугольника 84
4.2. Некоторые свойства треугольников 86
4.3. Теорема синусов 87
4.4. Теорема косинусов 88
4.5. Вписанные и описанные окружности 89
4.6. Параллелограмм 90
4.7. Ромб 92
4.8. Трапеция 94
Задания уровня С5
ЗАДАЧИ С ПАРАМЕТРАМИ
5.1. Задачи с использованием свойств квадратного трехчлена 102
5.2. Задачи с параметром
с использованием свойств всех функций 111
Задания уровня С6 130
Приложение. РАЦИОНАЛЬНЫЕ НЕРАВЕНСТВА
(задания уровня С3 для самостоятельного решения до изучения темы «Логарифмы» в школьном курсе математики) 135
Библиографический список 137.

Предложения интернет-магазинов

ЕГЭ 2013. Математика. Типовые тестовые задания

Автор(ы): Семенов Алексей Львович, Ященко Иван Валерьевич, Высоцкий Иван Ростиславович   Издательство: Экзамен, 2013 г.  Серия: ЕГЭ Типовые тестовые задания. Официал

Цена: 77 руб.   Купить

Типовые тестовые задания по математике содержат 10 вариантов комплектов заданий, составленных с учётом всех особенностей и требований Единого государственного экзамена в 2013 году. Назначение пособия - предоставить читателям информацию о структуре и содержании контрольных измерительных материалов 2013 г. по математике, степени трудности заданий. В состав авторского коллектива входят специалисты, имеющие большой опыт работы в школе и вузе и принимающие участие в разработке тестовых заданий для ЕГЭ. В сборнике даны ответы на все варианты тестов и приводятся решения всех заданий одного из вариантов. Кроме того, приведены образцы бланков, используемых на ЕГЭ для записи ответов и решений. Пособие может быть использовано учителями для подготовки учащихся к экзамену по математике в форме ЕГЭ, а также старшеклассниками и абитуриентами - для самоподготовки и самоконтроля.


ЕГЭ 2013. Математика. Типовые тестовые задания

Автор(ы): Семенов А. Л., Высоцкий И. Р., Захаров П. И., Панферов В. С.   Издательство: Экзамен, 2013 г.  Серия: ЕГЭ Типовые тестовые задания. Триколор

Цена: 67 руб.   Купить

Типовые тестовые задания по математике содержат 10 вариантов комплектов заданий, составленных с учетом всех особенностей и требований Единого государственного экзамена в 2013 году. Назначение пособия - предоставить читателям информацию о структуре и содержании контрольных измерительных материалов 2013 г. по математике, степени трудности заданий. В состав авторского коллектива входят специалисты, имеющие большой опыт работы в школе и вузе и принимающие участие в разработке тестовых заданий для ЕГЭ. В сборнике даны ответы на все варианты тестов и приводятся решения всех заданий одного из вариантов. Пособие может быть использовано учителями для подготовки учащихся к экзамен}' по математике в форме ЕГЭ, а также старшеклассниками и абитуриентами - для самоподготовки и самоконтроля. Приказом № 729 Министерства образования и науки Российской Федерации учебные пособия издательства "Экзамен" допущены к использованию в общеобразовательных учреждениях.


ЕГЭ 2013. Математика. Типовые тестовые задания

Автор(ы): Высоцкий И. Р., Захаров П. И., Панферов В. С.   Издательство: Экзамен, 2013 г.  Серия: ЕГЭ Типовые тестовые задания. Официал

Цена: 84 руб.   Купить

Типовые тестовые задания по математике содержат 10 вариантов комплектов заданий, составленных с учётом всех особенностей и требований Единого государственного экзамена в 2013 году. Назначение пособия - предоставить читателям информацию о структуре и содержании контрольных измерительных материалов 2013 г. по математике, степени трудности заданий. В состав авторского коллектива входят специалисты, имеющие большой опыт работы в школе и вузе и принимающие участие в разработке тестовых заданий для ЕГЭ. В сборнике даны ответы на все варианты тестов и приводятся решения всех заданий одного из вариантов. Кроме того, приведены образцы бланков, используемых на ЕГЭ для записи ответов и решений. Пособие может быть использовано учителями для подготовки учащихся к экзамену по математике в форме ЕГЭ, а также старшеклассниками и абитуриентами - для самоподготовки и самоконтроля. Приказом № 729 Министерства образования и науки Российской Федерации учебные пособия издательства "Экзамен" допущены к использованию в общеобразовательных учреждениях.


Математика. Подготовка к ЕГЭ: математический бой. Задания частей В и С

Автор(ы): Коннова Елена Генриевна, Иванов Сергей Олегович   Издательство: Легион, 2013 г.  Серия: Готовимся к ЕГЭ

Цена: 60 руб.   Купить

Предлагаемое пособие адресовано учащимся 10-11-х классов и учителям для успешной, интересной и творческой организации подготовки к ЕГЭ по математике на уроках и во внеурочные часы. Книга посвящена решению заданий части В и С1-С4 при помощи технологии математического боя - интеллектуального соревнования команд. В процессе подготовки к единому экзамену с помощью данной книги достигаются как минимум три цели - отработка индивидуальных умений обучающихся, организация эффективного повторения материала в классе или в группе школьников и формирование коллективных навыков решения задач. Издание включает варианты математических боев по алгебре и геометрии двух уровней сложности, правила математического боя, ответы и подробные указания к решениям четырех вариантов. Пособие является частью учебно-методического комплекса "Математика. Подготовка к ЕГЭ", включающего книги "Математика. Подготовка к ЕГЭ-2013", "Математика. ЕГЭ-2013. Учебно-тренировочные тесты", "Математика. Повышенный уровень ЕГЭ-2013 (С1,С3). Тематические тесты. Уравнения, неравенства, системы" и другие.