x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика

ЕГЭ 2012. Математика. Тригонометрические уравнения. Корянов А.Г., Прокофьев А.А. 2011

Название: ЕГЭ 2012. Математика. Тригонометрические уравнения.

Автор: Корянов А.Г., Прокофьев А.А.
2011

   Прежде чем перейти к рассмотрению тригонометрических уравнений, остановимся на некоторых важных вопросах, имеющих непосредственное отношение к решению этих уравнений.

   Числовая (или координатная) окружность активно применяется в преподавании тригонометрии, с ее помощью легко демонстрировать множества чисел, объединенных по определенным свойствам. Поэтому рассмотрение примеров в данном пособии будет в основном связано с координатной окружностью. В тех случа-
ях, где затруднительно использовать числовую окружность, для отбора корней тригонометрического уравнения применяют координатную прямую.
Числовой (координатной) окружностью называют окружность единичного радиуса, на которой выбраны:
а) начало отсчета;
б)   положительное  направление  (против часовой стрелки);
в) единица измерения (радиус r = 1).
Отображение числового множества R на координатную окружность наглядно можно представить как «наматывание» координатной прямой на координатную окружность: положительный луч координатной прямой — в положительном направлении, отрицательный луч — в отрицательном направлении (см. рис. 1).
Отмстим, что отображение числового множества R на координатную окружность не является взаимно однозначным : каждая точка окружности изображает бесконечное множество действительных чисел, каждому действительному числу соответствует единственная точка окружности.

СОДЕРЖАНИЕ
1. Способы отбора корней в тригонометрических уравнениях 1
2. Отбор общих корней в нескольких сериях решений тригонометрического уравнения 1
3. Отбор корней уравнения, удовлетворяющих дополнительным условиям 2
а) корни уравнения принадлежат промежутку 2
б) корни уравнения удовлетворяют неравенству 4
4. Отбор корней уравнения, связанный с методом замены 4
5. Уравнения, содержащие дробные выражения 5
6. Уравнения, содержащие иррациональные выражения 6
7. Уравнения, содержащие показательные выражения 8
8. Уравнения, содержащие логарифмические выражения 8
9. Уравнения, содержащие модули 9
10. Уравнения, содержащие обратные тригонометрические выражения 10
11. Комбинированные уравнения 10
12. Упражнения 12
Список литературы 21

Предложения интернет-магазинов

Математика. Подготовка к ЕГЭ. Тригонометрические уравнения. Методы решений и отбор корней (С1)

Автор(ы): Прокофьев Александр Александрович, Корянов Анатолий Георгиевич   Издательство: Легион, 2014 г.  Серия: Готовимся к ЕГЭ

Цена: 99 руб.   Купить

Предлагаемое учебно-методическое пособие содержит материал, посвященный важному разделу алгебры - тригонометрическим уравнениям (задание С1 на ЕГЭ). Книга включает параграфы по темам "Способы отбора корней в тригонометрических уравнениях" и "Основные методы решения". Теоретический материал подкреплён примерами и блоками тренировочных упражнений, снабжённых ответами. Пособие адресовано выпускникам средней школы, планирующим получить на ЕГЭ высокий балл, учителям и методистам. Издание является дополнением к учебно-методическому комплексу "Математика. Подготовка к ЕГЭ". 2-е издание, дополненное.


Математика. ЕГЭ. Задачи на целые числа (типовые задания 19)

Автор(ы): Прокофьев Александр Александрович, Корянов Анатолий Георгиевич   Издательство: Легион, 2016 г.  Серия: Готовимся к ЕГЭ

Цена: 147 руб.   Купить

Пособие посвящено одному из самых трудных заданий ЕГЭ по математике - заданию 19 профильного уровня (бывшее задание С6). В большом количестве представлены и примеры выполнения заданий, и упражнения для самостоятельной работы. Ко всем заданиям даны ответы, а в некоторых случаях приведены указания. Издание адресовано выпускникам, сдающим ЕГЭ по математике профильного уровня, а также учителям и методистам. Книга дополняет учебно-методический комплекс "Математика. Подготовка к ЕГЭ".


Математика. Подготовка к ЕГЭ. Задание 16. Многогранники: типы задач и методы их решения

Автор(ы): Прокофьев Александр Александрович, Корянов Анатолий Георгиевич   Издательство: Легион, 2015 г.  Серия: Готовимся к ЕГЭ

Цена: 152 руб.   Купить

Предлагаемое пособие посвящено выполнению задания 16 (ранее С2) на ЕГЭ по математике. Материал, представленный в книге, структурирован по тематическому принципу, а внутри каждой темы распределён по типам задач. Все блоки материала включают теоретическую и наглядно-практическую (примеры и решения задач различными методами) части, а также тренировочные упражнения. В главе "Дополнения" собран основной материал, необходимый для решения стереометрических задач: способы построения сечений многогранников плоскостью, представление о векторном и координатном методах решения задач, набор опорных задач. Издание адресовано старшеклассникам, готовящимся к сдаче ЕГЭ, учителям и методистам. Книга дополняет учебно-методический комплекс "Математика. Подготовка к ЕГЭ".


Математика. Подготовка к ЕГЭ. Задание 17. Решение неравенств с одной переменной

Автор(ы): Прокофьев Александр Александрович, Корянов Анатолий Георгиевич   Издательство: Легион, 2015 г.  Серия: Готовимся к ЕГЭ

Цена: 124 руб.   Купить

Предлагаемое пособие посвящено выполнению задания 17 (ранее СЗ) на ЕГЭ по математике. Это задание повышенного уровня сложности, представляющее неравенство, которое содержит рациональные, иррациональные, показательные, логарифмические или модульные выражения, или систему неравенств. В пособии рассмотрены и прокомментированы все основные типы неравенств с одной переменной, соответствующие школьной программе по математике, представлен весь необходимый справочный материал и образцы заданий СЗ из экзаменационных работ ЕГЭ 2010-2013 гг. В книге изложены различные методы решения неравенств (алгебраические, функционально-графические, геометрические), дан большой набор упражнений для самостоятельного решения. Издание адресовано старшеклассникам, готовящимся к сдаче ЕГЭ, учителям и методистам. Книга входит в учебно-методический комплекс "Математика. Подготовка к ЕГЭ". 2-е издание, исправленное дополненное.