x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
Высшая математика - Руководство к решению задач - часть 1 - Лунгу К.Н., Макаров Е.В.

Высшая математика - Руководство к решению задач - часть 1 - Лунгу К.Н., Макаров Е.В.

Название: Высшая математика - Руководство к решению задач - часть 1. 2005.

Автор: Лунгу К.Н., Макаров Е.В.

    Настоящее учебное пособие написано авторами на основе многолетнего опыта чтения лекций и проведения практических занятий по высшей математике в Московском государственном Открытом университете на различных факультетах. Его следует рассматривать как некоторое методическое руководство по решению наиболее типичных математических задач. Большое внимание уделяется построению и исследованию графиков функций, вычислению пределов последовательностей и пределов функций. Авторы предлагают разные способы решения задач и используют этот прием для ознакомления читателя с большим количеством действий и выбором простейшего.
Пособие рассчитано на студентов очной, заочной и вечерней форм обучения факультетов, где математика не является профилирующей дисциплиной.

    Настоящее учебное пособие написано авторами на основе многолетнего опыта чтения лекций и проведения практических занятий по высшей математике в Московском государственном Открытом университете на различных факультетах очной, заочной и вечерней форм обучения, где математика не является профилирующей дисциплиной.
Авторы поставили перед собой цель привить студенту умение грамотно выбрать правильный подход к решению конкретной задачи, для чего по каждой теме приведено достаточное количество типовых решенных задач с необходимым методическим комментарием. Этому же способствуют излагаемые в начале каждого параграфа основные теоретические сведения (определения, теоремы, формулы), необходимые для решения последующих задач. Конечно, перед тем как начинать решать любые задачи, имеет смысл познакомиться с теорией по учебникам, список которых указан в конце книги. Хотя в книге достаточно много теоретртческой информации, иногда имеется намек на то, откуда тот или иной факт можно извлечь. Например, §8 гл. VII состоит только из формулировок теорем, но из них получается много других выводов и формул: правило Лопиталя, необходимые условия экстремума, формулы Тейлора и др.

ОГЛАВЛЕНИЕ
Предисловие 6
Глава I. Системы линейных уравнений 7
§ 1. Метод Жордана-Гаусса 7
§ 2. Метод Крамера 18
§ 3. Метод обратной матрицы 26
§ 4. Ранг матрицы. Исследование систем 33
Глава II. Аналитическая геометрия на плоскости 41
§ 1. Декартова система координат. Простейшие задачи 41
§ 2. Полярные координаты 42
§ 3. Линии первого порядка 47
§ 4. Линии второго порядка 52
§ 5. Приведение общего уравнения кривой второго порядка к каноническому виду 52
Глава III. Элементы векторной алгебры 68
§ 1. Понятие вектора. Линейные операции над векторами 68
§ 2. Скалярное произведение векторов 72
§ 3. Векторное произведение векторов 74
§ 4. Смешанное произведение векторов 76
Глава IV. Аналитическая геометрия в пространстве 80
§ 1. Плоскость в пространстве 80
§ 2. Прямая в пространстве 84
§ 3. Плоскость и прямая в пространстве 88
§ 4. Поверхности второго порядка 94
Глава V. Функции 102
§ 1. Основные понятия 102
§ 2. Деформация графиков функций 106
§ 3. Предел последовательности 112
§ 4. Вычисление пределов функций 117
§ 5. Односторонние пределы 128
§ 6. Непрерывные функции 130
Глава VI. Элементы высшей алгебры 135
§ 1. Понятие комплексного числа 135
§ 2. Геометрическое представление комплексного числа. Тригонометрическая и показательная формы комплексного числа 136
§ 3. Арифметические действия с комплексными числами 138
§ 4. Извлечение корня из комплексного числа 139
§ 5. Разложение рациональной дроби на простейшие 143
Глава VII. Дифференциальное исчисление функции одной переменной 150
§ 1. Определение производной 150
§ 2. Геометрическая, механическая и экономическая интерпретации производной 151
§ 3. Связь дифференцируемости с непрерывностью 153
§ 4. Таблица производных и правила дифференцирования 154
§ 5. Дифференциал функции и ее линеаризация 157
§ 6. Производная и дифференциал высших порядков 160
§ 7. Дифференцирование обратных функций. Дифференцирование функций, заданных неявно и параметрически 161
§ 8. Основные теоремы дифференциального исчисления 165
§ 9. Применение производной 166
§ 10. Асимптоты 173
§ 11. Исследование функций на выпуклость, вогнутость и перегиб при помощи второй производной 176
§ 12. Применение высших производных 177
§ 13. Построение графиков 180
Глава VIII. Функции нескольких переменных 189
§ 1. Определение функции нескольких переменных 189
§ 2. Предел и непрерывность функции двух переменных 190
§ 3. Частные производные и дифференциал функции двух переменных 193
§ 4. Касательная плоскость и нормаль к поверхности. Линеаризация функций двух переменных 196
§ 5. Частные производные и дифференциалы высших порядков 199
§ 6. Производная по направлению. Градиент 201
§ 7. Формула Тейлора для функции двух переменных 204
§ 8. Экстремум функции двух переменных 205
§ 9. Наибольшее и наименьшее значение функции 209
§ 10. Метод наименьших квадратов 211
Список литературы 213

Предложения интернет-магазинов

Высшая математика. Руководство к решению задач. Часть 2

Автор(ы): Лунгу Константин Никитович, Макаров Евгений Васильевич   Издательство: Физматлит, 2015 г.

Цена: 666 руб.   Купить

Учебное пособие написано на основе многолетнего опыта чтения лекций и проведения практических занятий по высшей математике в Московском государственном открытом университете на различных факультетах. Оно является продолжением части 1 одноименного учебного пособия и содержит указания по решению задач основного курса, начиная с неопределенного интеграла и заканчивая дифференциальными уравнениями, а также задач по теории вероятностей и математической статистике. Наряду с большим числом решенных задач, приводятся упражнения для самостоятельного решения; ко всем главам даны контрольные задания. Допущено Министерством образования и науки Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлениям подготовки и специальностям в области техники и технологии. 2-е издание, исправленное.


Основные методы решения задач по элементарной математике. Пособие для абитуриентов

Автор(ы): Лунгу Константин Никитович, Макаров Евгений Васильевич   Издательство: Физматлит, 2015 г.

Цена: 967 руб.   Купить

В пособии отражены основные разделы элементарной математики, входящие в программу средней школы. Приведены задачи по темам, которые в школьной программе представлены недостаточно: обратные тригонометрические функции, текстовые задачи и др. Отдельную часть составляют тесты для подготовки к ЕГЭ. Рекомендуется абитуриентам, готовящимся к поступлению в вузы технического и экономического профилей, школьникам старших классов для углубленного изучения математики, а также преподавателям средних школ для работы с учащимися.


Математика. 1 класс. Подготовка к решению задач. ФГОС

Автор(ы): Рыдзе Оксана Анатольевна   Издательство: Дрофа, Астрель, 2016 г.  Серия: Планета знаний

Цена: 105 руб.   Купить

Пособие "Математика. Подготовка к решению задач. 1-й класс" предназначено для формирования у первоклассников учебных действий, необходимых для успешного решения текстовых задач. В ходе работы с пособием школьник учится читать и понимать информацию на рисунке, в таблице, в тексте. Знакомится с приёмами сравнения текстов, установления зависимости между известным и неизвестным, условием и вопросом, вопросом и ответом. Получает первичные представления о задаче, её структурных элементах и решении. Тексты заданий, комментарии к ходу решения читает взрослый. Тетрадь можно использовать для работы дома и в школе.


Математика. 3 класс. Учебник. В 2-х частях. Часть 1. ФГОС

Автор(ы): Чекин Александр Леонидович   Издательство: Академкнига/Учебник, 2014 г.  Серия: Математика

Цена: 363 руб.   Купить

Учебник состоит из двух частей, каждая из которых обеспечивает реализацию требований ФГОС и рассчитана на учебное полугодие. Первая часть посвящена изучению письменной и устной нумерации многозначных чисел и их сравнению, изучению алгоритмов сложения и вычитания столбиком, взаимосвязи умножения и деления, табличных случаев деления, видов треугольников, новых единиц длины и массы. Большое внимание уделяется решению простых и составных сюжетных задач на все арифметические действия. Учебник дополнен тремя тетрадями на печатной основе, включая тетрадь практических задач. Рекомендовано Министерством образования и науки Российской Федерации.