x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
ВИДЕОКУРСЫ
Дифференциальные уравнения, Задачи и решения, Просветов Г.И., 2011

Дифференциальные уравнения, Задачи и решения, Просветов Г.И., 2011

Дифференциальные уравнения, Задачи и решения, Просветов Г.И., 2011.
 
  В учебно-практическом пособии рассмотрены основные методы и приемы решения дифференциальных уравнений. Приведенные в учебном материале примеры и задачи позволяют успешно овладеть знаниями по изучаемой дисциплине. Пособие содержит программу курса, задачи для самостоятельного решения с ответами и задачи для контрольной работы. Издание рассчитано на преподавателей и студентов высших учебных заведений.

МЕТОД ИЗОКЛИН.
Поле направлений состоит из точек, в каждой из которых определен вектор. Интегральная кривая в каждой своей точке касается поля направлений. Изоклина — это множество точек, в которых векторы поля направлений одинаковы.
Метод изоклин позволяет построить поле направлений уравнения y' =f(x, y).

Для каждой точки (х, у) из области определения функции f справедливо, что y' = tg a, где a — угол наклона касательной к кривой, проходящей через точку (х, у). Для нескольких значений к из области значений функции f строим изоклины f(х, у) = k. Через точки изоклин f(х, у) = k проводим короткие отрезки под углом a = arctg k к оси Ох. По этому полю направлений строим интегральные кривые, у которых в точках пересечения с каждой изоклиной касательные параллельны отрезкам, построенным на этой изоклине.
Хотя точность метода изоклин небольшая, он дает представление о поведении решений уравнения y' =f(х, у).

Содержание
Предисловие 3
ГЛАВА 1. Основные сведения о дифференциальных уравнениях 5
ГЛАВА 2. Метод изоклин 6
ГЛАВА 3. Составление дифференциального уравнения данного семейства кривых 8
ГЛАВА 4. Дифференциальные уравнения с разделяющимися переменными 9
ГЛАВА 5. Уравнения, приводящиеся к уравнениям с разделяющимися переменными 11
ГЛАВА 6. Однородные дифференциальные уравнения первого порядка 12
ГЛАВА 7. Уравнения, приводящиеся к однородным 14
ГЛАВА 8. Линейные дифференциальные уравнения первого порядка 16
ГЛАВА 9. Уравнение Бернулли 18
ГЛАВА 10. Уравнение в полных дифференциалах 19
ГЛАВА 11. Решение дифференциальных уравнений с помощью нахождения интегрирующего множителя 21
ГЛАВА 12. Существование и единственность решения 22
ГЛАВА 13. Метод введения параметра 24
13.1. Уравнения Лагранжа и Клеро 24
ГЛАВА 14. Понижение порядка дифференциального уравнения 26
14.1. Понижение порядка дифференциального уравнения, которое не содержит искомой функции 26
14.2. Понижение порядка дифференциального уравнения, которое не содержит независимой переменной 27
14.3. Понижение порядка дифференциального уравнения, однородного относительно искомой функции и ее производных 27
14.4. Понижение порядка дифференциального уравнения, однородного относительно некоторых степеней независимой переменной и искомой функции 28
14.5. Понижение порядка дифференциального уравнения приведением обеих частей уравнения к полной производной 30
ГЛАВА 15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами 31
ГЛАВА 16. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами 33
ГЛАВА 17. Уравнение Эйлера 37
ГЛАВА 18. Решение линейных дифференциальных уравнений с переменными коэффициентами с помощью подбора частного решения 38
ГЛАВА 19. Свойства решений линейных дифференциальных уравнений второго порядка с переменными коэффициентами 41
ГЛАВА 20. Линейные однородные системы дифференциальных уравнений с постоянными коэффициентами, приведенные к нормальному виду 43
20.1. Метод исключения неизвестных 43
20.2. Метод собственных векторов 44
ГЛАВА 21. Системы дифференциальных уравнений, не приведенные к нормальному виду 48
ГЛАВА 22. Линейные неоднородные системы дифференциальных уравнений 50
ГЛАВА 23. Устойчивость 52
23.1. Устойчивость по первому приближению 52
ГЛАВА 24. Особые точки 56
24.1. Узел 56
24.2. Седло 57
24.3. Фокус 59
24.4. Центр 60
24.5. Вырожденный и дикритический узлы 61
24.6. Общий случай 63
ГЛАВА 25. Нелинейные системы дифференциальных уравнений 65
25.1. Первые интегралы 65
25.2. Интегрируемые комбинации 66
ГЛАВА 26. Уравнения в частных производных первого порядка 68
ГЛАВА 27. Дифференцирование решения по параметру 71
ГЛАВА 28. Разложение решения по степеням параметра 73
Ответы 75
Программа учебного курса «Дифференциальные уравнения» 77
Задачи для контрольной работы по курсу «Дифференциальные уравнения» 81
Приложение. Таблицы производных 83
Литература 84.

Предложения интернет-магазинов

Функциональные уравнения. Задачи и решения

Автор(ы): Просветов Георгий Иванович   Издательство: Альфа-Пресс, 2010 г.

Цена: 94 руб.   Купить

В учебно-практическом пособии рассмотрены основные методы и приемы решения функциональных уравнений. Приведенные в учебном материале примеры и задачи позволяют успешно овладеть знаниями по изучаемой дисциплине. Пособие содержит программу курса, задачи для самостоятельного решения с ответами и задачи для контрольной работы. Издание рассчитано на студентов, школьников, преподавателей и всех тех, что интересуется математикой.


Степени, корни и логарифмы: задачи и решения

Автор(ы): Просветов Георгий Иванович   Издательство: Альфа Колор, 2010 г.

Цена: 135 руб.   Купить

В учебно-практическом пособии рассмотрены основные методы и приемы решения задач, содержащих степени, корни и логарифмы. Приведенные в учебном материале примеры и задачи позволяют успешно овладеть знаниями по изучаемой дисциплине. Пособие содержит программу курса и задачи для самостоятельного решения с ответами. Издание рассчитано на школьников, преподавателей и всех тех, кто интересуется математикой.


Графики функций. Задачи и решения

Автор(ы): Просветов Георгий Иванович   Издательство: Альфа-Пресс, 2010 г.

Цена: 104 руб.   Купить

В учебно-практическом пособии рассмотрены основные методы исследования функций и построения их графиков. Приведенные в учебном материале примеры и задачи позволяют успешно овладеть знаниями по изучаемой дисциплине. Пособие содержит программу курса, задачи для самостоятельного решения с ответами и задачи для контрольной работы. Издание рассчитано на школьников, студентов, преподавателей и всех тех, кто интересуется математикой.


ЕГЭ по математике. Задачи и решения

Автор(ы): Просветов Георгий Иванович   Издательство: Альфа-Пресс, 2010 г.

Цена: 111 руб.   Купить

Учебно-практическое пособие состоит из двух разделов: "Повторим математику" и "Готовимся к ЕГЭ". Приведенные в учебном материале примеры и задачи позволяют читателю успешно овладеть навыками решения математических задач и эффективно подготовиться к сдаче Единого государственного экзамена по математике. Пособие содержит задачи для самостоятельного решения с ответами. Издание адресовано учащимся старших классов, их родителям и учителям.