x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
ВИДЕОКУРСЫ
Курс высшей математики, Том 3, Часть 1, Смирнов В.И., 1974

Курс высшей математики, Том 3, Часть 1, Смирнов В.И., 1974

Курс высшей математики, Том 3, Часть 1, Смирнов В.И., 1974.

   В настоящем издании, в связи с добавлением нового материала, третий том разбит на две части. Первая часть содержит весь материал, относящийся к линейной алгебре, теории квадратичных форм и теории групп. В этой части наиболее существенные добавления относятся к теории групп. Большую помощь при составлении этих добавлений мне оказал Д. К. Фаддеев. Ему, в частности, принадлежит изложение материала, относящегося к выяснению простоты группы вращения и группы Лоренца, построение группы по структурным постоянным и интегрированию на группе [70, 81, 87, 88, 89, 90]. Приношу ему большую благодарность за помощь в работе над этой книгой.

   Понятие об определителе. Мы начнем настоящий параграф с решения простой алгебраической задачи, а именно задачи о решении систем уравнений первой степени. Рассмотрение этой задачи приведет нас к важному понятию об определителе.
Начнем с рассмотрения наиболее простых частных случаев. Возьмем сначала систему двух уравнений  с двумя неизвестными:
Коэффициенты при неизвестных aik снабжены двумя значками, первый из которых указывает, в каком уравнении находится этот коэффициент, а второй значок указывает, при каком из неизвестных он стоит.

ОГЛАВЛЕНИЕ
Предисловие к четвертому изданию
Предисловие к девятому изданию
ГЛАВА I ОПРЕДЕЛИТЕЛИ И РЕШЕНИЕ СИСТЕМ УРАВНЕНИЙ
§ 1. Определитель и его свойства
1. Понятие об определителе (7). 2. Перестановки (11). 3. Основные свойства определителя (16). 4. Вычисление определителя (21). 5. Примеры (23). 6. Теорема об умножении определителей (29).
7. Прямоугольные таблицы (33).
§ 2. Решение систем уравнений
8. Теорема Крамера (36). 9. Общий случай систем уравнений (38). 10. Однородные системы (42). 11. Линейные формы (45). 12. n-мерное векторное пространство (47). 13. Скалярное произведение (53). 14. Геометрическая интерпретация однородных систем (55). 15. Случай неоднородной системы (57). 16. Определитель Грамма. Неравенство Адамара (60) 17. Системы линейных дифференциальных уравнений с постоянными коэффициентами (64). 18. Функциональные определители (68). 19. Неявные функции (72).
ГЛАВАII ЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ И КВАДРАТИЧНЫЕ ФОРМЫ
§ 3. Линейные преобразования
20. Преобразование координат в трехмерном пространстве (76).
21. Общие линейные преобразования вещественного трехмерного пространства (80). 22. Ковариантные и контравариантные афинные векторы (87) 23. Понятие тензора (90). 24. Примеры афинных ортогональных тензоров (93). 25. Случай n-мерного комплексного пространства (95). 26. Основы матричного исчисления (99). 27. Характеристические числа матриц и приведение матриц к каноническому виду (104). 28. Унитарные и ортогональные преобразования (ПО). 29. Неравенство Коши — Буняковского (115). 30. Свойства скалярного произведения и нормы (117). 31. Процесс ортогонали-зации векторов (118).
§ 4. Квадратичные формы
32. Преобразование квадратичной формы к сумме квадратов (120).
33. Случай кратных корней характеристического уравнения (124).
34. Примеры (129). 35. Классификация квадратичных форм (131). 36. формула Якоби (136). 37. Одновременное приведение двух квадратичных форм к сумме квадратов (137). 38, Малые колебания (139).
9. Экстремальные свойства собственных значений квадратичной формы (141). 40. Эрмитовские матрицы и формы Эрмита (143). 41. Коммутирующие эрмитовские матрицы (148). 42. Приведение унитарных матриц к диагональной форме (151). 43. Матрицы проектирования (155). 44. Функции от матриц (160). 45. Пространство с бесчисленным множеством измерений (163). 46. Сходимость векторов (168). 47. Ортонормированные системы (173). 48. Линейные преобразования с бесчисленным множеством переменных (176). 49. Функциональное пространство L (180). 50. Связь между пространствами l2 и L (182). 51. Линейные операторы в L2 (183).
ГЛАВА III ОСНОВЫ ТЕОРИИ ГРУПП И ЛИНЕЙНЫЕ ПРЕДСТАВЛЕНИЯ ГРУПП
§ 5. Основы общей теории групп
52. Группы линейных преобразований (188). 53. Группы правильных многогранников (191). 54. Преобразования Лоренца (194). 55. Перестановки (201). 56. Абстрактные группы (205). 57. Подгруппа (208) 58. Классы и нормальный делитель (212). 59. Примеры (215). 60. Изоморфные и гомоморфные группы (217). 61. Примеры (219). 62. Стереографическая проекция (220). 63. Унитарная группа и группа движения (222). 64. Общая линейная группа и группа Лоренца (228)
§ 6. Линейные представления групп
65. Представление группы линейными преобразованиями (232).
66. Основные теоремы (236). 67. Абелевы группы и представления первого порядка (240). 68. Линейные представления унитарной группы с двумя переменными (242). 69. Линейные представления группы вращения (249). 70. Теорема о простоте группы вращения (252). 71. Уравнение Лапласа и линейные представления группы вращения (253). 72. Прямое произведение матриц (259). 73. Композиция двух линейных представлений группы (261). 74. Прямое произведение групп и его линейные представления (264). 75. Разбиение композиции Dj X Dj линейных представлений группы вращения (267). 76. Свойство ортогональности (273). 77. Характеры (276). 78. Регулярное представление группы (281). 79. Примеры представления конечных групп (283). 80. Представления линейной группы с двумя переменными (285) 81. Теорема о простоте группы Лоренца (289).
§ 7. Непрерывные группы
82. Непрерывные группы. Структурные постоянные (290). 83. Бесконечно малые преобразования (294). 84. Группа вращения (298). 85. Бесконечно малые преобразования и представления группы вращения (299). 86. Представления группы Лоренца (303). 87. Вспомогательные формулы (306). 88. Построение группы по структурным постоянным (309). 89. Интегрирование на группе (311), 90. Свойство ортогональности. Примеры (316).
Алфавитный указатель

Предложения интернет-магазинов

Краткий справочник по математике для абитуриентов и студентов. Формулы, алгоритмы, примеры

Автор(ы): Судавная Ольга Илларьевна   Издательство: Питер, 2013 г.  Серия: Карманный справочник

Цена: 113 руб.   Купить

Судавная Ольга Илларьевна - преподаватель высшей математики на кафедре высшей математики СПбНИУИТМО (Национальный исследовательский университет информационных технологий, механики и оптики, бывший ЛИТМО), имеет педагогический стаж более 40 лет, является автором целого ряда учебных пособий по математике. Краткий справочник содержит основные сведения как по элементарной, так и по высшей математике. Его особенностью является наличие не только определений и формул, но и иллюстрирующих их примеров. Справочник предназначен для выпускников средних учебных заведений, слушателей подготовительных курсов, студентов вузов, а также для всех тех, кому необходимо оперативно восстановить в памяти какие-либо математические понятия.


Информатика. 3 класс. Тетрадь проектов. В 3-х частях. Часть 1. ФГОС

Автор(ы): Семенов Алексей Львович, Рудченко Татьяна Александровна   Издательство: Просвещение, 2016 г.  Серия: Школа России (ФГОС)

Цена: 187 руб.   Купить

Курс "Информатика" рассчитан на обучение в течение двух лет в объеме 34-68 ч в год. Программа курса предусматривает несколько различных вариантов работы с ним, в том числе как с использованием средств ИКТ, так и бескомпьютерный вариант. Курс издаётся в трёх частях: часть 1 (3 класс), часть 2 (3-4 классы), часть 3 (4 класс). В материалы каждой части курса входит учебник, рабочая тетрадь, тетрадь проектов, компьютерная составляющая и методическое пособие для учителя. 6-е издание.


Информатика. 4 класс. Рабочая тетрадь. В 3-х частях. Часть 3. ФГОС

Автор(ы): Семенов Алексей Львович, Рудченко Татьяна Александровна   Издательство: Просвещение, 2015 г.  Серия: Школа России (ФГОС)

Цена: 212 руб.   Купить

Курс "Информатика" рассчитан на обучение в течение двух лет в объеме 34-68 ч в год. Программа курса предусматривает несколько различных вариантов работы с ним, в том числе как с использованием средств ИКТ, так и бескомпьютерный вариант. Курс издаётся в трёх частях: часть 1 (3 класс), часть 2 (3-4 классы), часть 3 (4 класс). В материалы каждой части курса входит учебник, рабочая тетрадь, тетрадь проектов, компьютерная составляющая и методическое пособие для учителя. 3-е издание.


Информатика. 3-4 классы. Рабочая тетрадь. В 3-х частях. Часть 2. ФГОС

Автор(ы): Семенов Алексей Львович, Рудченко Татьяна Александровна   Издательство: Просвещение, 2016 г.  Серия: Школа России (ФГОС)

Цена: 212 руб.   Купить

Курс "Информатика" рассчитан на обучение в течение двух лет в объеме 34-68 ч в год. Программа курса предусматривает несколько различных вариантов работы с ним, в том числе как с использованием средств ИКТ, так и бескомпьютерный вариант. Курс издается в трех частях: часть 1 (3 класс), часть 2 (3 - 4 классы), часть 3 (4 класс). В материалы каждой части курса входит учебник, рабочая тетрадь, тетрадь проектов, компьютерная составляющая и методическое пособие для учителя. 5-е издание.