x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
Курс лекций по математическому анализу, Бесов О.В., 2004

Курс лекций по математическому анализу, Бесов О.В., 2004

Курс лекций по математическому анализу, Бесов О.В., 2004.

   Изложение указанных в заглавии разделов курса математического анализа, изучаемых в МФТИ в первом семестре, отличается от изложения этих вопросов в учебниках и учебных пособиях.

Определение предела последовательности.
Определение. Пусть А — произвольное множество и пусть каждому n N поставлен в соответствие некоторый элемент а А. Тогда говорят, что задана последовательность
a1, а2, a3...,
которая обозначается также символами {аn}, {аn}n=1 {aп}n N.

Пара, (n, аn) называется п-м элементом последовательности, ап — значением n-го элемента последовательности.
Всякая последовательность имеет счетное число элементов, множество значений элементов последовательности может быть конечным или счетным. Например, множество значений элементов последовательности
0,1,0,1,0,1,... (2.1.1)
состоит из двух элементов: 0 и 1.

Мы будем рассматривать пока лишь последовательности со значениями из R и называть их числовыми последовательностями или просто последовательностями.
Замечание. Часто вместо «значение элемента последовательности» говорят «элемент последовательности». Например, можно сказать: «Данный отрезок содержит бесконечно много элементов последовательности» и т.п.

Содержание
Обозначения
Глава 1. Множество действительных чисел
§1.1. Аксиоматика
§1.2. Верхние и нижние грани
§1.3. Система вложенных отрезков
§1.4. Связь между различными принципами непрерывности
§1.5. Счетные и несчетные множества
Глава 2. Предел последовательности
§2.1. Определение предела последовательности
§2.2. Свойства пределов, связанные с неравенствами
§2.3. Свойства пределов, связанные с арифметическими операциями
§2.4. Предел монотонной последовательности
§2.5. Число е
§2.6. Подпоследовательности
§2.7. Теорема Больцано-Вейерштрасса
§2.8. Критерий Коши
§2.9. Изображение действительных чисел бесконечными десятичными дробями
Глава 3. Предел функции
§3.1. Понятие функции
§3.2. Элементарные функции и их классификация
§3.3. Понятие предела функции
§3.4. Свойства пределов функции
§3.5. Критерий Коши
§3.6. Односторонние пределы
§3.7. Пределы монотонных функций
§3.8. Бесконечно малые и бесконечно большие функции. Сравнение функций
Глава 4. Непрерывные функции
§4.1. Непрерывность функции в точке
§4.2. Предел и непрерывность сложной функции
§4.3. Односторонняя непрерывность и точки разрыва
§4.4. Свойства функций, непрерывных на отрезке
§4.5. Обратные функции
§4.6. Показательная функция
§4.7. Логарифмическая и степенная функции
§4.8. Тригонометрические и обратные тригонометрические функции
§4.9. Некоторые замечательные пределы.

Предложения интернет-магазинов

Лексикология китайского языка

Автор(ы): Кленин Иван Дмитриевич, Щичко Владимир Федорович   Издательство: Восточная книга, 2013 г.

Цена: 284 руб.   Купить

Настоящий курс лекций отражает современный уровень знаний в области лексикологии и фразеологии китайского языка. В нем подробно изложены сведения об особенностях китайской лексики, в частности, о таких, как военно-техническая терминология, морфемная контракция, китайская лексикография, которые в лекциях других авторов обычно не рассматриваются.


Курс лекций по истории китайского языка. Учебное пособие

Автор(ы): Щичко Владимир Федорович, Радус Л. А., Абдрахимов Леонид Гимадитдинович   Издательство: ВКН, 2015 г.

Цена: 272 руб.   Купить

Данное пособие предназначено для студентов старших курсов и людей, интересующихся китайским языком, его историей, письменностью, а также памятниками древнекитайской философии и литературы. Содержание пособия позволяет читателю ознакомиться с особенностями китайской иероглифической письменности и ее практическим применением в реальной жизни, лучше понять трудности, возникающие при изучении китайского языка, оценить по достоинству вклад русских и зарубежных ученых в описание китайского языка.


Школьный справочник по физике

Автор(ы): Гришина Элеонора Николаевна, Веклюк Ирина Николаевна   Издательство: Феникс, 2013 г.  Серия: Библиотека школьника

Цена: 87 руб.   Купить

В пособии кратко изложен школьный курс физики. По каждому paзделу даны основные понятия, законы, выводы формул. Может быть использовано в процессе изучения курса физики и эффективного повторения теоретического материала. Предназначено для учащихся средних школ и абитуриентов, сдающих единый государственный экзамен по физике. Может быть полезным учителям физики при изложении теоретического материала в форме лекций для старшеклассников. 3-е издание


Программирование для школьников и студентов

Автор(ы): Колесов Вадим Владимирович, Романов Максим Николаевич   Издательство: Феникс, 2013 г.  Серия: Абитуриент

Цена: 158 руб.   Купить

Эта книга - учебное пособие по программированию, написанное ясно и просто. Она адресована тем, кто хочет научиться составлять простые компьютерные программы для Windows на современном диалекте языка Паскаль, который называется языком Delphi. В книге много примеров и упражнений с решениями. Отдельный раздел посвящен подготовке к ЕГЭ по информатике. В основу книги положен курс лекций "Современное программирование", который авторы читают в университете студентам, специализирующимся в области прикладной математики и информационных технологий.