x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
ВИДЕОКУРСЫ
Курс линейной алгебры и многомерной геометрии, Шарипов Р.А., 1996

Курс линейной алгебры и многомерной геометрии, Шарипов Р.А., 1996

Курс линейной алгебры и многомерной геометрии, Шарипов Р.А., 1996.

  Книга рассчитана как учебное пособие по основному курсу многомерной геометрии и линейной алгебры. На математическом факультете Башкирского Государственного университета этот предмет изучается на первом курсе во втором семестре. Он входит в программу базового математического образования для физико-математических факультетов и изучается во всех университетах России.

ЛИНЕЙНЫЕ ВЕКТОРНЫЕ ПРОСТРАНСТВА.
третий элемент z € М. Это правило можно обозначать в форме z = f(x,y). Такая форма записи называется префиксной формой записи алгебраической операции: в ней знак операции f предшествует элементам x и y, к которым он применяется. Имеется и другая — инфиксная форма записи алгебраической операции, когда знак операции ставится между элементами х и у. Примером могут служить бинарные операции сложения и умножения чисел: z = х + у, z = х • у. Иногда роль знака алгебраической операции играют специальные скобки, а разделителем служит обычная запятая. Примером такого обозначения служит векторное произведение трехмерных векторов: z = [х,у].

Пусть К — числовое поле. Под числовым полем в этой книге мы будем понимать одно из трех полей: поле рациональных чисел К = Q, поле вещественных чисел К = R или поле комплексных чисел К = С. Скажем, что на множестве М задана операция умножения на числа из поля К, если задано правило, которое каждой паре а, х, состоящей из числа а € К и элемента х € М, ставит в соответствие некоторый элемент у € М. Операция умножения на число записывается в инфиксной форме: у = а • х. Знак умножения в этой записи часто не ставится: у = ах.

ОГЛАВЛЕНИЕ
ПРЕДИСЛОВИЕ
ГЛАВА I. ЛИНЕЙНЫЕ ВЕКТОРНЫЕ ПРОСТРАНСТВА И ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ
§1. Множества и отображения
§2. Линейные векторные пространства
§3. Линейная зависимость и независимость
§4. Порождающие системы и базисы
§5. Координаты. Преобразование координат векторов при замене базиса
§6. Пересечения и суммы подпространств
§7. Смежные классы по подпространству. Понятие факторпространства
§8. Линейные отображения
§9. Матрица линейного отображения
§10. Алгебраические операции с отображениями. Пространство гомоморфизмов Ноm (V, W)
ГЛАВА II. ЛИНЕЙНЫЕ ОПЕРАТОРЫ
§1. Линейные операторы. Алгебра эндоморфизмов End(V) и группа автоморфизмов Aut(V)
§2. Операторы проектирования
§3. Инвариантные подпространства. Сужение и факторизация операторов
§4. Собственные числа и собственные векторы
§5. Нильпотентные операторы
§6. Корневые подпространства. Теорема о сумме корневых подпространств
§7. Жорданов нормальный базис линейного оператора. Теорема Гамильтона-Кэли
ГЛАВА III. СОПРЯЖЕННОЕ ПРОСТРАНСТВО
§1. Линейные функционалы. Векторы и ковекторы. Сопряженное пространство
§2. Преобразование координат ковектора при замене базиса
§3. Ортогональные дополнения в сопряженном пространстве
§4. Сопряженное отображение
ГЛАВА IV. БИЛИНЕЙНЫЕ И КВАДРАТИЧНЫЕ ФОРМЫ
§1. Симметрические билинейные формы и квадратичные формы. Формула восстановления
§2. Ортогональные дополнения относительно квадратичной формы
§3. Приведение квадратичной формы к каноническому виду. Индексы инерции и сигнатура
§4. Положительно определенные квадратичные формы. Критерий Сильвестра
ГЛАВА V. ЕВКЛИДОВЫ ПРОСТРАНСТВА
§1. Норма и скалярное произведение. Угол между векторами. Ортонормированные базисы
§2. Квадратичные формы в евклидовом пространстве. Диагонализация пары форм
§3. Самосопряженные операторы. Теорема о спектре и базисе из собственных векторов
§4. Изометрии и ортогональные операторы
ГЛАВА VI. АФФИННЫЕ ПРОСТРАНСТВА
§1. Точки и параллельные переносы. Аффинные пространства
§2. Евклидовы точечные пространства. Квадрики в евклидовом пространстве
СПИСОК ЛИТЕРАТУРЫ.

Предложения интернет-магазинов

Сборник формул по математике

Автор(ы): Цикунов А.Е.   Издательство: Питер, 2013 г.  Серия: Карманный справочник

Цена: 64 руб.   Купить

Сборник содержит формулы элементарной высшей математики - арифметики и алгебры, геометрии и тригонометрии, векторной и линейной алгебры, дифференциального и интегрального исчисления, рядов, теории вероятности и др. Он адресован школьникам и абитуриентам, студентам высших и средних специальных учебных заведений, преподавателям и инженерам. 3-е издание.


Математика: справочник для студентов ВУЗов, техникумов, колледжей

Автор(ы): Абанина Татьяна Ивановна   Издательство: Феникс, 2014 г.  Серия: Справочники

Цена: 250 руб.   Купить

Справочник содержит теоретические сведения, рекомендации для решения задач и образцы решений типовых примеров по важнейшим темам высшей математики: линейной алгебре, аналитической геометрии, дифференциальному исчислению функций одной и нескольких переменных и другим. Для студентов высших учебных заведений, техникумов и колледжей различных специальностей.


Алгебра. Весь школьный курс в таблицах

  Издательство: Кузьма, 2016 г.  Серия: Весь школьный курс в таблицах

Цена: 220 руб.   Купить

Данное пособие составлено в виде таблиц, систематизирующих и обобщающих теоретические сведения по школьному курсу алгебры. В книге в доступной форме изложены все разделы алгебры, изучаемые в средней школе. Пособие рекомендуется использовать для коллективной работы в школе и индивидуальных занятий дома. Составитель: Татьяна Сергеевна Степанова.


Самостоятельные и контрольные работы по алгебре и геометрии для 7 класса

Автор(ы): Ершова Алла Петровна, Голобородько Вадим Владимирович, Ершова Анна Сергеевна   Издательство: Илекса, 2016 г.

Цена: 113 руб.   Купить

Пособие содержит самостоятельные и контрольные работы по всем важнейшим темам курса алгебры и геометрии 7 класса. Работы состоят из 6 вариантов трех уровней сложности. Дидактические материалы предназначены для организации дифференцированной самостоятельной работы учащихся. 8-е издание, исправленное и дополненное.