x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
ВИДЕОКУРСЫ
Лекции по теории вероятностей и математической статистике, Соловьёв А.А., 2003

Лекции по теории вероятностей и математической статистике, Соловьёв А.А., 2003

Лекции по теории вероятностей и математической статистике, Соловьёв А.А., 2003.

   Закономерные события это события, которые всегда происходят как только создаются определенные условия. Закономерные же явления - это система закономерных событий.
Математика, как и любая другая наука, изучает математические модели закономерных явлений окружающею нас мира.
Случайные же события - это события, которые при одних и тех же условиях происходят или нет. Массовые случайные события это события, для которых можно создать одни и те же условия, при которых случайное событие может произойти или нет.

Предмет математической статистики.
Теория вероятностей изучает математические модели случайных явлений. Математическая статистика решает обратные задачи: разрабатывает различные методы: которые позволяют по статистическим данным, которые носят случайный характер, подобрать подходящую теоретико - вероятностную модель.
Множество объектов, подлежащих контролю называется генеральной совокупностью.

Множество отобранных объектов называется выборкой. Число элементов выборки называется объемом выборки. Повторная выборка — это выборка с возвращением. Бесповторная выборка — выборка без возвращения. Выборка должна быть представительной и случайной. Объекты генеральной совокупности описываются одним или несколькими числовыми параметрами. Допустим, что объекты генеральной совокупности описываются случайной величиной принимающей на каждом объекте некоторое числовое значение.

Оглавление
1. Вероятностное пространство
1.1. Предмет теории вероятностей
1.2. Вероятностное пространство
1.3. Дискретное вероятностное пространство
1.4. Условные вероятности, независимость
1.5. Независимые испытания
2. Случайные величины
2.1. Случайные величины (конечная схема)
2.2. Случайные величины (общий случай)
2.3. Характеристические функции
2.4. Центральная предельная теорема
2.5. Многомерные характеристические функции
2.6. Многомерное нормальное распределение
2.7. Распределения, связанные с многомерным нормальным распределением
2.8. Закон больших чисел
3. Математическая статистика
3.1. Предмет математической статистики
3.2. Эмпирическая функция распределения
3.3. Выборочный метод
3.4. Понятие оценки
3.5. Асимптотическая нормальность выборочных моментов
3.6. Методы нахождения оценок
3.7. Доверительные интервалы
3.8. Непараметрические критерии проверки гипотез. Критерий значимости
3.9. Статистические гипотезы. Критерий Неймана Пирсона.

Предложения интернет-магазинов

Математика. Теория вероятностей и дискретная математика: Элементы теории, решение задач

Автор(ы): Баюк Олег Александрович, Маркарян Елена Георгиевна   Издательство: Просвещение, 2013 г.  Серия: Сложные темы ЕГЭ

Цена: 377 руб.   Купить

Пособие предназначено учащимся общеобразовательных учреждений (школ, гимназий, колледжей) для углублённого изучения теории вероятностей и связанных с ней разделов дискретной математики (теории множеств, математической логики, комбинаторики, теории графов и математической статистики) в целях успешной сдачи ЕГЭ по математике. В пособии изложены основные теоретические сведения, необходимые для решения задач, приводятся решения типичных заданий ЕГЭ, а также содержатся задания для самостоятельной работы (с ответами, указаниями к решению или решениями). Книга может быть использована в качестве сборника задач на подготовительных курсах, факультативных занятиях, при самостоятельной подготовке к поступлению в вуз и при последующем обучении в вузе.


События. Вероятности. Статистическая обработка данных. Доп. параграфы к курсу алгебры 7-9 классов

Автор(ы): Мордкович Александр Григорьевич, Семенов Павел Владимирович   Издательство: Мнемозина, 2009 г.  Серия: Математика

Цена: 168 руб.   Купить

Пособие предназначено для ознакомления учащихся с элементами теории вероятностей и математической статистики. На большом количестве примеров изложены начальные понятия, идеи и методы комбинаторики, теории вероятностей и статистики. Даны задачи с решениями и ответами, а также упражнения с возрастающей степенью сложности для самостоятельной работы школьников (включая ответы). 6-е издание.


ОГЭ 2017. Математика. 9 класс. Теория вероятностей и элементы статистики

Автор(ы): Рязановский Андрей Рафаилович   Издательство: Экзамен, 2017 г.  Серия: ОГЭ Практикум

Цена: 67 руб.   Купить

В предлагаемой книге, состоящей из двух частей, подробно рассмотрены основные понятия, относящиеся к теории вероятностей и математической статистике, детально, по шагам разобраны решения задач, которые обычно предлагаются в КИМ на ОГЭ. Кроме того, подробно, на примерах излагаются простейшие понятия комбинаторики (комбинаторные числа для числа перестановок, размещений и сочетаний без повторений). С такой же подробностью ведется изложение основных положений математической статистики, показаны на примерах отличия выборочного среднего от моды и медианы и дано пояснение, в каких случаях какое из этих средних нужно использовать. Назначение пособия - отработка практических навыков учащихся по подготовке к экзамену (в новой форме) в 9 классе по математике. В сборнике даны ответы на все варианты заданий. Пособие предназначено учителям и методистам, использующим тесты для подготовки к Основному государственному экзамену, оно также может быть использовано учащимися для самоподготовки и самоконтроля. Приказом Министерства образования и науки Российской Федерации учебные пособия издательства "Экзамен" допущены к использованию в общеобразовательных организациях.


Высшая математика. Руководство к решению задач. Часть 2

Автор(ы): Лунгу Константин Никитович, Макаров Евгений Васильевич   Издательство: Физматлит, 2015 г.

Цена: 666 руб.   Купить

Учебное пособие написано на основе многолетнего опыта чтения лекций и проведения практических занятий по высшей математике в Московском государственном открытом университете на различных факультетах. Оно является продолжением части 1 одноименного учебного пособия и содержит указания по решению задач основного курса, начиная с неопределенного интеграла и заканчивая дифференциальными уравнениями, а также задач по теории вероятностей и математической статистике. Наряду с большим числом решенных задач, приводятся упражнения для самостоятельного решения; ко всем главам даны контрольные задания. Допущено Министерством образования и науки Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлениям подготовки и специальностям в области техники и технологии. 2-е издание, исправленное.