x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
ВИДЕОКУРСЫ
Математика, Богомолов Н.В., Самойленко П.И., 2010

Математика, Богомолов Н.В., Самойленко П.И., 2010

Математика, Богомолов Н.В., Самойленко П.И., 2010.

  В учебнике рассмотрены основные разделы математики, охватываемые действующими программами для техникумов: алгебра, начала анализа, дифференциальное и интегральное исчисления, дифференциальные уравнения, аналитическая геометрия на плоскости, стереометрия, элементы теории вероятностей и математической статистики. Приведено большое количество примеров с решениями. Издание является одной из книг учебного комплекта, в который также входят «Сборник задач по математике» Н. В. Богомолова и «Сборник дидактических заданий по математике» Н. В. Богомолова и Л. Ю. Сергиенко.
Для студентов техникумов гуманитарного направления, финансово-экономических, технических, строительных, сельскохозяйственных. Может быть использован школьниками старших классов общеобразовательных школ, слушателями курсов по подготовке в ВУЗы и учителями школ.

Геометрическая интерпретация комплексных чисел.
Комплексное число z = а + bi можно изобразить точкой плоскости с координатами (а; b). Плоскость хОу, на которой изображаются комплексные числа, называется комплексной плоскостью (рис. 2). При этом действительные числа изображаются точками оси абсцисс, которую называют действительной осью, а чисто мнимые числа — точками оси ординат, которую называют мнимой осью.

Любое комплексное число z = а + bi единственным способом определяется его действительной и мнимой частями. Каждому комплексному числу z = а + bi в комплексной плоскости соответствует единственная точка М(а; b), и, обратно, каждой точке (а; b) плоскости хОу соответствует единственное комплексное число. Например, число z = 3 + 2i изображается точкой с абсциссой 3 и ординатой 2 (рис. 3). Число z = 0 + 3i изобразится с точкой (0; 3) на оси ординат, которую мы условились называть мнимой осью (рис. 4). Сопряженные числа z = 2 + i и z = 2- i расположены симметрично относительно действительной оси (рис. 5).

ОГЛАВЛЕНИЕ
Предисловие 3
Математические обозначения 4
Латинский алфавит 7
Греческий алфавит 7
ЧАСТЬ 1. АЛГЕБРА И НАЧАЛА АНАЛИЗА
ГЛАВА 1. ЛИНЕЙНЫЕ И КВАДРАТНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА. ЭЛЕМЕНТЫ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ
§ 1. Рациональные числа. Иррациональные числа. Понятие о мнимых и комплексных числах 8
§ 2. Метод координат 25
§ 3. Погрешности приближенных значений чисел 26
§ 4. Действия над приближенными значениями чисел 32
§ 5. Линейные уравнения с одной переменной 39
§ 6. Линейные неравенства 48
§ 7. Системы линейных уравнений 57
§ 8. Квадратные уравнения 68
§ 9. График квадратной функции. Графическое решение квадратного уравнения 80
§ 10. Квадратные неравенства. Решение неравенств методом промежутков 88
§ 11. Иррациональные уравнения и иррациональные неравенства 94
§ 12. Нелинейные системы уравнений с двумя переменными 98
§ 13. Простейшие задачи линейного программирования с двумя переменными 99
ГЛАВА 2. ФУНКЦИИ. СТЕПЕННАЯ, ПОКАЗАТЕЛЬНАЯ И ЛОГАРИФМИЧЕСКАЯ ФУНКЦИИ
§ 14. Функции и их основные свойства 103
§ 15. Степенная функция 106
§ 16. Показательная функция ПО
§ 17. Логарифмическая функция 111
§ 18. Показательные уравнения. Системы показательных уравнений 119
§ 19. Показательные неравенства 122
§ 20. Логарифмические уравнения. Системы логарифмических уравнений 123
§ 21. Логарифмические неравенства 125
ГЛАВА 3. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ
§ 22. Радианное измерение дуг и углов 126
§ 23. Обобщение понятия дуги (угла) 131
§ 24. Тригонометрические функции числового аргумента 135
§ 25. Знаки, числовые значения и свойства четности и нечетности тригонометрических функций 139
§ 26. Изменение тригонометрических функций при возрастании аргумента от 0 до 2n 143
§ 27. Основные тригонометрические тождества 144
§ 28. Выражение тригонометрических функций через другие тригонометрические функции 146
§ 29. Периодичность тригонометрических функций 149
§ 30. Формулы приведения 151
§ 31. Тригонометрические функции алгебраической суммы двух аргументов (формулы сложения) 157
§ 32. Тригонометрические функции удвоенного аргумента 160
§ 33. Тригонометрические функции половинного аргумента 162
§ 34. Выражение тригонометрических функций через тангенс половинного аргумента 164
§ 35. Преобразование произведения тригонометрических функций в сумму 165
§ 36. Преобразование алгебраической суммы тригонометрических функций в произведение 167
§ 37. Свойства тригонометрических функций и их графики 171
§ 38. Обратные тригонометрические функции 178
§ 39. Построение дуги (угла) по данному значению тригонометрической функции. Простейшие тригонометрические уравнения 181
§ 40. Тригонометрические- уравнения 186
§ 41. Тригонометрические неравенства 192
ГЛАВА 4. ПРЕДЕЛЫ
§ 42. Предел переменной величины 193
§ 43. Предел функции 202
§ 44. Непрерывность функции 208
ГЛАВА 5. ПРОИЗВОДНАЯ
§ 45. Скорость изменения функции 211
§ 46. Производная функции 213
§ 47. Формулы дифференцирования 217
§ 48. Геометрические приложения производной 224
§ 49. Физические приложения производной 226
§ 50. Производные тригонометрических функций 228
§ 51. Производные обратных тригонометрических функций 230
§ 52. Производная логарифмической функции 233
§ 53. Производные показательных функций 234
§ 54. Производная второго порядка. Физический смысл производной второго порядка 236
ГЛАВА 6. ИССЛЕДОВАНИЕ ФУНКЦИЙ С ПОМОЩЬЮ ПРОИЗВОДНЫХ
§ 55. Возрастание и убывание функций 238
§ 56. Исследование функций на максимум и минимум 239
§ 57. Направление выпуклости графика 246
§ 58. Точки перегиба 248
ГЛАВА 7. ДИФФЕРЕНЦИАЛ ФУНКЦИИ. ПРИЛОЖЕНИЕ ДИФФЕРЕНЦИАЛА К ПРИБЛИЖЕННЫМ ВЫЧИСЛЕНИЯМ
§ 59. Сравнение бесконечно малых величин 250
§ 60. Дифференциал функции 251
§ 61. Приложение дифференциала к приближенным вычислениям 254
ГЛАВА 8. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
§ 62. Неопределенный интеграл и его простейшие свойства 261
§ 63. Непосредственное интегрирование 265
§ 64. Геометрические приложения неопределенного интеграла 268
§ 65. Физические приложения неопределенного интеграла 270
ГЛАВА 9. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
§ 66. Основные свойства и вычисление определенного интеграла 271
§ 67. Физические приложения определенного интеграла 278
§ 68. Понятие о дифференциальном уравнении 282
ЧАСТЬ 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ
ГЛАВА 10. ПРЯМАЯ НА ПЛОСКОСТИ И ЕЕ УРАВНЕНИЯ
§ 69. Векторы на плоскости. Основные понятия и определения 288
§ 70. Метод координат 298
§ 71. Уравнения прямых 300
§ 72. Системы прямых 304
ГЛАВА 11. КРИВЫЕ ВТОРОГО ПОРЯДКА
§ 73. Окружность 309
§ 74. Эллипс 311
§ 75. Гипербола 313
§ 76. Парабола 317
ЧАСТЬ 3.ЭЛЕМЕНТЫ СТЕРЕОМЕТРИИ
ГЛАВА 12. ПРЯМЫЕ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ
§ 77. Основные понятия стереометрии 320
§ 78. Параллельность прямой и плоскости. Параллельные плоскости 323
§ 79. Перпендикулярные прямые и плоскости 326
§ 80. Двугранные и многогранные углы 329
ГЛАВА 13. МНОГОГРАННИКИ И ПЛОЩАДИ ИХ ПОВЕРХНОСТЕЙ
§ 81. Многогранники и их основные свойства 334
§ 82. Параллелепипед 336
§ 83. Пирамида 337
§ 84. Площади поверхностей многогранников 341
§ 85. Правильные многогранники 343
ГЛАВА 14. ФИГУРЫ ВРАЩЕНИЯ И ПЛОЩАДИ ИХ ПОВЕРХНОСТЕЙ
§ 86. Цилиндр 344
§ 87. Конус 346
§ 88. Усеченный конус 347
§ 89. Сфера и шар 349
§ 90. Площадь поверхности сферы и ее частей 351
ГЛАВА 15. ОБЪЕМЫ МНОГОГРАННИКОВ И ТЕЛ ВРАЩЕНИЯ
§ 91. Объемы прямых параллелепипедов, призмы и цилиндра 356
§ 92. Объем геометрической фигуры с заданными площадями поперечных сечений 360
ЧАСТЬ 4. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ
ГЛАВА 16. ЭЛЕМЕНТЫ КОМБИНАТОРИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ
§ 93. Элементы комбинаторики 371
§ 94. Элементы теории вероятностей 374
ГЛАВА 17. ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ
§ 95. Основные задачи и понятия 382
§ 96. Статистическое распределение выборки 386.

Предложения интернет-магазинов

Экология животных. 7 класс. Учебное пособие. ФГОС

Автор(ы): Бабенко Владимир Григорьевич, Шаталова Светлана Петровна, Шубин Андрей Олегович, Богомолов Денис Валерьевич   Издательство: Вентана-Граф, 2015 г.  Серия: Экология

Цена: 635 руб.   Купить

Пособие входит в систему учебно-методических комплектов "Алгоритм успеха" и предназначено для экологизации школьного курса биологии. Книга знакомит читателя с влиянием условий существования на жизнь животных, особенностями животного мира в разных местообитаниях, отражает многообразие взаимосвязей живых существ в природных сообществах, влияние животных на окружающую их природную среду, на жизнь человека и его хозяйственную деятельность, показывает роль человека в природе. Адресовано учащимся общеобразовательных учреждений. Пособие может быть использовано при организации обучения по ФК государственных образовательных стандартов основного общего образования (2004 г.) и по ФГОС (2010 г.). 2-е издание, переработанное и дополненное.


Математика. Окружающий мир. 4 класс. Рабочие программы по системе учебников "Школа 2100"

Автор(ы): Юмакулова Инна Владимировна, Маркина Наталья Владимировна   Издательство: Учитель, 2012 г.  Серия: Планирование учебной деятельности: начальная школа

Цена: 73 руб.   Купить

В пособии представлены рабочие программы по математике, окружающему миру для 4 класса, разработанные в соответствии с основными положениями Федерального государственного образовательного стандарта начального общего образования и ориентированные на работу по учебникам Л. Г. Петерсон "Математика" (М.: Ювента, 2010), А. А. Вахрушева, Д. Д. Данилова, О. В. Бурского, А. С. Раутиана "Окружающий мир. Человек и природа" (М.: Баласс, 2010), А. А. Вахрушева, Д. Д. Данилова, С. С. Кузнецовой, Е. В. Сизовой, С. В. Тырина "Окружающий мир. Человек и человечество" (М.: Баласс, 2010). Программы содержат развернутое тематическое планирование системы учебных занятий (уроков) и педагогических средств, с помощью которых формируются универсальные учебные действия; описание личностных, метапредметных и предметных результатов освоения образовательной программы; учебно-методическое обеспечение. Предназначено руководителям методических объединений, учителям начальных классов.


Хрестоматия юного баяниста (аккордеониста).2 класс ДМШ

  Издательство: Феникс, 2015 г.  Серия: Учебные пособия для ДМШ

Цена: 177 руб.   Купить

Настоящее учебное пособие продолжает серию педагогических репертуарных сборников для баянистов и аккордеонистов, учащихся в ДМШ. Издание основывается на потребности педагогов музыкальных школ и школ искусств в нотных сборниках, содержащих постоянно используемый в работе с учащимися нотный материал. Составление и редакция нотного материала данного учебного пособия основано на принципе узнаваемости и ставит своей целью приобщение молодых музыкантов к народной песне, к русской и зарубежной классике - основе интонационно-смыслового художественного воспитания. В сборник также вошли этюды для начинающих композиторов Г. Беляева и Б. Самойленко. Составитель: В. В. Ушенин.