x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
Неравенства - Соловьев Ю.П.

Неравенства - Соловьев Ю.П.

Название: Неравенства. 2005.

Автор: Соловьев Ю.П.

     В брошюре различными способами доказываются известные, в том числе из школьной программы, неравенства Коши, Йенсена, Коши—Буняковского. Многие утверждения сформулированы в виде упражнений, решения которых приведены в конце брошюры. Кроме того, приведён список задач для самостоятельного решения.
Текст брошюры представляет собой запись лекции, прочитанной автором 6 октября 2001 года на Малом мехмате МГУ для школьников 9–11 классов (запись А. А. Белкина). Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников, учителей.

     В школьном курсе математики рассматриваются различные неравенства. Многие из них основаны на очень простом неравенстве — неравенстве о средних, появившемся ещё в древние времена.
ДОКАЗАТЕЛЬСТВО НЕРАВЕНСТВА КОШИ
Прежде всего нам необходимо познакомиться с одним широко известным и очень важным методом доказательства, на случай, если кто-либо из читателей с ним не знаком, — это метод математической индукции.
Метод математической индукции
Пусть есть утверждение, содержащее натуральное число п. Пусть также выполняются следующие условия.
1. База   индукции:   утверждение выполняется для n=1.
2. Шаг индукции: для любого п из того, что утверждение выполняется для n, следует, что оно выполняется для n+1. Предположение того, что утверждение верно для пу называется предположением индукции.
Тогда, согласно принципу математической индукции, утверждение верно для всех n>1.
Метод математической индукции тем и хорош, что позволяет провести доказательство в общем виде, не рассматривая отдельно каждое n. Конечно, это не единственный способ провести доказательство в общем виде, но очень часто хорошо срабатывает именно он.

Содержание
Введение
Доказательство неравенства Коши
Неравенство Йенсена
Примеры
Задачи для самостоятельного решения
Решения упражнений

Предложения интернет-магазинов

Задачи с параметрами. Применение свойств функций, преобразование неравенств

Автор(ы): Локоть Владимир Владимирович   Издательство: АРКТИ, 2010 г.  Серия: Абитуриент: Готовимся к ЕГЭ

Цена: 137 руб.   Купить

В первой части пособия рассмотрены задачи с параметрами, при решении которых используется область определения, множество значений, ограниченность и монотонность функций. Во второй части пособия рассмотрен целый ряд примеров, для решения которых удобно применять равносильные преобразования, быстро приводящие исходные неравенства (неравенства с модулем, иррациональные, показательные, логарифмические, тригонометрические) к рациональным неравенствам. Пособие адресовано учителям, студентам, учащимся 11-го класса. Материал может быть полезен при подготовке к Единому государственному экзамену (ЕГЭ).