x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
Обратные и некорректные задачи, Кабанихин С.И., 2009

Обратные и некорректные задачи, Кабанихин С.И., 2009

Обратные и некорректные задачи, Кабанихин С.И., 2009.

В учебнике изложены методы исследования и решения обратных и некорректных задач линейной алгебры, интегральных и операторных уравнений, интегральной геометрии, спектральных обратных задач и обратных задач рассеяния; рассмотрены линейные некорректные задачи и коэффициентные обратные задачи для гиперболических, параболических и эллиптических уравнений; дан обширный справочный материал.
Для студентов учреждений высшего профессионального образования. Может быть полезен аспирантам, стажерам, инженерам, научным работникам, а также преподавателям ВУЗов.

Об определении обратных и некорректных задач.
Каждый человек ежеминутно решает обратные и некорректные задачи. И решает, как правило, быстро и эффективно (если, конечно, находится в добром здравии и ясном сознании). Возьмем, к примеру, зрительное восприятие. Установлено, что за минуту глаз человека фиксирует лишь конечное число точек окружающего мира. А как же тогда человек видит все? Мозг (в этой ситуации — персональный компьютер) по увиденным точкам восполняет (интерполирует и экстраполирует) все, что глаз не успел зафиксировать.

Ясно, что воссоздать истинную картину (в общем случае — объемную и цветную!) по нескольким точкам можно лишь в случае, когда она хорошо знакома (большинство предметов мы уже видели, а иногда и трогали руками). То есть, несмотря на некорректность (неединственность и неустойчивость) задачи (восстановить по нескольким точкам наблюдаемый объект и все, что его окружает) мозг справляется с этой задачей довольно быстро. Почему? Он использует богатый жизненный опыт (априорную информацию). Достаточно мельком взглянуть на человека, чтобы понять, кто перед вами: старик или ребенок. Но если ставить перед собой задачу определения возраста человека с точностью до пяти лет, беглого взгляда, как правило, недостаточно.

Уже на примере, упомянутом в эпиграфе, видно, что рассмотрение только лишь тени Земли на поверхности Луны недостаточно для однозначного решения обратной задачи проективной геометрии (восстановления формы Земли). Многие полагают (писал Аристотель), что Земля имеет форму барабана на основании того, что линия горизонта на закате — прямая. И Аристотель приводит еще два доказательства шарообразности (привлекая дополнительную информацию): предметы в любой точке поверхности падают вертикально (к центру тяжести), а картина звездного неба меняется при движении наблюдателя по поверхности Земли.

Предложения интернет-магазинов

Избранные задачи по геометрии. Трапеция

Автор(ы): Кушнир И. А.   Издательство: Илекса, 2016 г.

Цена: 91 руб.   Купить

Учебное пособие является второй книгой, посвященной геометрии простейших фигур. При этом пособие - первая книга в школьной геометрии, которая полностью посвящена трапеции. Пособие содержит восемнадцать глав. В них представлены основные свойства трапеции, соответствующие теоремы и доказательства, обратные задачи о трапеции и задачи на построение. Свойства трапеции рассматриваются через задачи различного уровня - от простейших до повышенной сложности. Все задачи приведены с подробными решениями. Пособие адресовано учащимся старших классов, абитуриентам, учителям, студентам педагогических вузов.


Основные методы решения задач по элементарной математике. Пособие для абитуриентов

Автор(ы): Лунгу Константин Никитович, Макаров Евгений Васильевич   Издательство: Физматлит, 2015 г.

Цена: 967 руб.   Купить

В пособии отражены основные разделы элементарной математики, входящие в программу средней школы. Приведены задачи по темам, которые в школьной программе представлены недостаточно: обратные тригонометрические функции, текстовые задачи и др. Отдельную часть составляют тесты для подготовки к ЕГЭ. Рекомендуется абитуриентам, готовящимся к поступлению в вузы технического и экономического профилей, школьникам старших классов для углубленного изучения математики, а также преподавателям средних школ для работы с учащимися.


Задачи Санкт-Петербургской олимпиады школьников по математике 2009 года

  Издательство: BHV, 2010 г.

Цена: 148 руб.   Купить

Книга предназначена, для школьников, учителей, преподавателей математических кружков и просто любителей математики. Читатель найдет в ней задачи Санкт-Петербургской олимпиады школьников по математике 2009 года, а также открытой олимпиады ФМЛ, которая, не будучи туром Санкт-Петербургской олимпиады, по характеру задач, составу участников и месту проведения является прекрасным дополнением к ней. Все задачи приведены с подробными решениями, условия и решения геометрических задач сопровождаются рисунками. В качестве дополнительного материала читатель найдет задачу с XX Летней конференция Турнира городов и статью о теореме Эрдеша, связанной с этой задачей, а также обзор результатов по проблеме дощечек.


Математика. 2 класс. Учебник в 2-х частях. Часть 1. ФГОС

Автор(ы): Дорофеев Георгий Владимирович, Миракова Татьяна Николаевна, Бука Татьяна Борисовна   Издательство: Просвещение, 2016 г.  Серия: Перспектива

Цена: 942 руб.   Купить

Учебник "Математика. 2 класс" (в двух частях) авторов Г. В. Дорофеева и др. со­ответствует требованиям ФГОС НОО и является составной частью завершённой предметной линии учебников "Математика". В рамках курса школьники" продолжают изучать математические действия: сложение, вычитание, умножение, деление в пределах 100. Вводятся взаимно обратные задачи, задачи в 2-3 действия. Геометрический материал дополнен объёмными фигурами (куб, шар, пирамида). Содержание и структура учебника направлены на достижение учащимися предметных, метапредметных и личностных результатов, отражённых во ФГОС. 8-е издание. Рекомендовано Министерством образования и науки Российской Федерации.