x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
ВИДЕОКУРСЫ
Ряды Фурье, теория поля, аналитические и специальные функции, преобразование Лапласа, Романовский П.И., 1973

Ряды Фурье, теория поля, аналитические и специальные функции, преобразование Лапласа, Романовский П.И., 1973

Ряды Фурье, теория поля, аналитические и специальные функции, преобразование Лапласа, Романовский П.И., 1973.

Книга представляет собой учебное пособие для студентов втузов по некоторым разделам математики, входящим в настоящее время в программы значительного числа высших технических учебных заведений. Книга может быть также полезна аспирантам технических кафедр, преподавателям и инженерам.

ГЛАВА I
РЯДЫ ФУРЬЕ И ИНТЕГРАЛ ФУРЬЕ
§ 1. Периодические функции
Пусть f (х)— функция, определенная на всей числовой прямой Число Т называется периодом этой функции, если от прибавления его к аргументу величина функции не меняется, т. в. если для всех х имеем

ОГЛАВЛЕНИЕ
Предисловие к первому изданию.
Предисловие ко второму изданию.
Предисловие к пятому изданию.
Глава I. Ряды Фурье и интеграл Фурье
§ 1. Периодические функции
§ 2. Ряды Фурье для функций с периодом 2п
§ 3. Комплексная форма ряда Фурье для функции с периодом 2п.
§ 4. Четные и нечетные функции
§ 5. Ряды Фурье для четных и нечетных функции с периодом.
§ 6. Ряды Фурье для функций с любым периодом.
§ 7. Уравнение свободных малых колебаний струны и его решение методом Фурье.
§ 8. Уравнение распространения тепла в стержне
§ 9. Интеграл Фурье.
§ 10. Комплексная форма интеграла Фурье.
§ 11. Интеграл Фурье для четных и нечетных функции.
§ 12 Ортогональные системы функций.
§ 13. Минимальное свойство коэффициентов Фурье.
§ 14. Замкнутые системы функций.
§ 15. О решении методом Фурье некоторых задач для лилейных уравнений с частными производными второго порядка.
Глава II. Основы теории поля.
§ 1. Основные сведения из векторной алгебры.
§ 2. Векторные функции скалярного переменного.
§ 3. Сопровождающий трехгранник пространственной кривой.
§ 4. Скалярное поле. Градиент скалярного поля.
§ 5. Криволинейные интегралы.
§ 6. Векторное поле.
§ 7. Поверхностные интегралы.
§ 8. Формула Остроградского.
§ 9. Векторная запись формулы Остроградского. Дивергенция векторного поля.
§ 10. Формула Стокса.
§ 11. Векторная запись формулы Стокса. Вихрь векторного поля.
§ 12. Операции второго порядка.
§ 13. Символика Гамильтона.
§ 14. Векторные операции в криволинейных координатах
Глава III. Начальные сведения об аналитических функциях
§ 1. Комплексные числа.
§ 2. Ряды с комплексными членами
§ 3. Степенные ряды.
§ 4. Показательные, гиперболические и тригонометрические функции комплексного переменного.
§ 5. Некоторые многозначные функции комплексного переменного.
§ 6. Производная функции комплексного переменного.
§ 7. Аналитические и гармонические функции.
§ 8. Интеграл функции комплексного переменного.
§ 9. Основная теорема Коши.
§ 10. Интегральная формула Коши.
§ 11. Интеграл типа Коши.
§ 12. Производные высших порядков от аналитической функции.
§ 13. Последовательности и ряды аналитических функции
§ 14. Ряд Тейлора.
§ 15. Ряд Лорана.
§ 16. Изолированные особые точки аналитической функции.
§ 17. Вычеты.
§ 18. Принцип аргумента.
§ 19. Дифференцируемые отображения.
§ 20. Конформные отображения областей.
§ 21. Задача Дирихле для круга и свойства гармонических функций.
Глава IV. О некоторых специальных функциях.
§ 1. Гамма-функция.
§ 2. Бесселевы функции с любым индексом.
§ 3. Формулы приведения для бесселевых функций.
§ 4. Бесселевы функции с полуцелым индексом.
§ 5. Интегральное представление бесселевых функций с целым индексом.
§ 6. Ряды Фурье — Бесселя.
§ 7. Асимптотическое представление бесселевых функций с целым индексом для больших значений аргумента.
§ 8. Интегральный логарифм, интегральный синус, интегральный косинус.
Глава V. Преобразование Лапласа.
§ 1. Вспомогательные сведения об интегралах, зависящих от параметра.
§ 2. Преобразование Лапласа.
§ 3. Простейшие свойства преобразования Лапласа.
§ 4. Свертка функций.
§ 5. Оригиналы с рациональными изображениями.
§ 6. Приложения к решению линейных дифференциальных уравнений с постоянными коэффициентами и систем линейных дифференциальных уравнений с постоянными коэффициентами.
§ 7. Приложение к решению линейных уравнений в конечных разностях с постоянными коэффициентами.
§ 8. Оригиналы с изображениями, регулярными в бесконечности.
§ 9. Изображения некоторых специальных функции.
§ 10. Формулы обращения.
§ 11. Достаточное условие для того, чтобы аналитическая функция была изображением.
§ 12. Об одном обобщении преобразования Лапласа.
Предметный указатель.

Предложения интернет-магазинов

ЕГЭ по математике. Практическая подготовка

Автор(ы): Андреева Анна Олеговна   Издательство: BHV, 2009 г.

Цена: 180 руб.   Купить

Пособие предназначено для целевой подготовки к сдаче экзамена по математике в формате ЕГЭ. Первая часть содержит краткую теорию в виде формул, таблиц, теорем по необходимым на экзамене темам: формулы сокращенного умножения, преобразование степеней и корней, квадратное уравнение, парабола, логарифмы, табличные значения тригонометрических функций, тригонометрические формулы, обратные тригонометрические функции, площади фигур, объемы и площади поверхностей фигур, необходимые теоремы геометрии, правила дифференцирования производных, производные элементарных функций, уравнение касательной функции. Во второй части даны блоки заданий от В1 до С3, содержащие разобранный типовой пример и от 5-и до 15-и заданий для самостоятельного решения. Приводятся ответы.


Переводческое преобразование текста. Учебное пособие

Автор(ы): Сапогова Лидия Ивановна   Издательство: Флинта, 2016 г.

Цена: 468 руб.   Купить

В пособии представлены упражнения и тексты из аутентичных английских и американских источников разных жанров для обучения переводу с английского языка на русский, сопровождаемые краткими теоретическими экскурсами в основные проблемы дисциплины "Теория и практика перевода с английского языка на русский". В пособие также включены переводческие мини-задачи и раздел анализа переводческих ошибок. Для самостоятельной и аудиторной работы студентов и аспирантов, обучающихся переводу, а также для преподавателей английского языка, ведущих занятия по переводу. 5-е издание, стереотипное.


Функции и построение их графиков. 7-9 классы

Автор(ы): Томилина Марина Ефимовна   Издательство: Литера, 2016 г.  Серия: Класс!!!ные подсказки

Цена: 69 руб.   Купить

Функции и построение графиков представлены в учебном пособии кратко и наглядно.


Рекурсивные функции

Автор(ы): Марченков Сергей Серафимович   Издательство: Физматлит, 2007 г.

Цена: 293 руб.   Купить

Брошюра знакомит читателя с алгоритмически вычислимыми функциями натурального аргумента - рекурсивными функциями. Вначале изучается простейший тип рекурсивных функций - примитивно рекурсивные функции. Затем происходит расширение круга вычислимых функций: рассматриваются частично определенные вычислимые функции, а также всюду определенные вычислимые функции, не являющиеся примитивно рекурсивными. В заключение определяются абстрактные вычислительные устройства - машины Тьюринга, и класс функций, вычислимых на машинах Тьюринга, связывается с классом частично рекурсивных функций. Для школьников старших классов и студентов вузов, знакомящихся с основами теории алгоритмов.