x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
ВИДЕОКУРСЫ
Ряды, Виленкин Н.Я., Цукерман В.В., 1982

Ряды, Виленкин Н.Я., Цукерман В.В., 1982

Ряды, Виленкин Н.Я., Цукерман В.В., 1982.

   Учебное пособие для студентов-заочников III курса физико-математических факультетов педагогических институтов.
Учебное пособие для студентов-заочников физико-математических факультетов пединститутов по разделам «Ряды» и «Ряды Фурье» программы курса «Математический анализ». В основу книги легли лекции, неоднократно читавшиеся авторами студентам МГЗПИ.

   Предлагаемая вниманию читателя книга является учебным пособием для студентов-заочников физико-математических факультетов пединститутов по разделам «Ряды» и «Ряды Фурье» программы курса «Математический анализ». Мы не сочли целесообразным, в отличие от действующей сейчас программы, отрывать изучение рядов Фурье от изучения функциональных рядов. Кроме того, мы считали полезным до изучения общей теории числовых и функциональных рядов получить разложение в степенные ряды основных элементарных функций — это позволяет студентам заранее приобрести общую ориентировку в вопросах, с которыми им предстоит познакомиться.
Первая глава книги содержит основные понятия о рядах и доказательство свойств сходящихся рядов, а также вывод формул для разложения элементарных функций в степенные ряды.
Вторая глава посвящена числовым рядам. Отметим упрощение доказательств теоремы об умножении рядов и теоремы Лейбница, для последней доказательство непосредственно сводится к теореме о стягивающейся системе отрезков (иной формулировкой, которой она и является). Одновременно рассматриваются числовые ряды в комплексной области.

ОГЛАВЛЕНИЕ
Предисловие 3
Введение 5
Глава I. Основные понятия, формула и ряд Тейлора 6
§ 1. Числовые ряды. Сходимость и расходимость числового ряда—
1. Числовые ряды —
2. Сумма ряда. Сходящиеся и расходящиеся ряды 7
§ 2. Свойства сходящихся рядов 11
1. Необходимый признак сходимости ряда. Остаток ряда —
2. Свойства сходящихся рядов 13
§ 3. Функциональные ряды и их область сходимости 16
1. Степенные ряды 17
2. Тригонометрические ряды 18
§ 4. Формула Тейлора —
§ 5. Разложение функций в ряд Тейлора 26
1. Ряд Тейлора —
2. Разложение функции у = lg (1 + *) 29
3. Разложение функции у = arctg х 30
4. Разложение в степенной ряд функции у = ех —
5. Разложение в степенной ряд функций у = sin х, у = cos х —
6. Разложение функции у = (1 + х)а, где х < 1 и а — любое число 31
7. Разложение других элементарных функций 33
Глава II. Числовые ряды 40
§ 6. Признаки сходимости числовых рядов с неотрицательными членами —
1. Признаки сравнения —
2. Признаки сходимости Даламбера и Коши 42
3. Интегральный признак сходимости Коши 44
4. Примеры исследования рядов на сходимость 47
§ 7, Свойства рядов с неотрицательными членами 55
1. Перестановка членов ряда с неотрицательными членагми —
2. Группировка членов и умножение рядов с неотрицательными членами —
§ 8. Знакопеременные ряды 58
1. Теорема Лейбница —
2. Абсолютно сходящиеся ряд 62
3. Свойства абсолютно сходящихся рядов 63
4. Свойства условно сходящихся рядов 67
§ 9. Числовые ряды в комплексной области 69
Глава III. Функциональные ряды 75
§ 10 Область сходимости функциональных рядов —
§ 11. Равномерная сходимость функциональных рядов 79
1. Введение —
2. Чебышевское расстояние между функциями 80
3. Равномерно сходящиеся функциональные последовательности 82
4. Равномерно сходящиеся ряды. Признак Вейерштрасса 83
5. Сохранение свойства непрерывности в случае равномерной сходимости 85
§ 12. Почленное интегрирование и дифференцирование функциональных рядов 87
1. Почленное интегрирование функциональных рядов —
2. Почленное дифференцирование функциональных рядов 90
§ 13. Функции комплексного переменного. Функциональные последовательности и ряды в комплексной области 93
1. Функции комплексного переменного —
2. Дифференцирование функций комплексного переменного 94
3. Функциональные последовательности и ряды в комплексной области 95
Глава IV. Степенные ряды 97
§ 14. Круг сходимости степенного ряда —
1. Теорема Абеля —
2. Область сходимости степенного ряда. Круг и радиус сходимости 98
3. Равномерная сходимость и непрерывность суммы степенного ряда 103
§ 15. Почленное интегрирование и почленное дифференцирование степенных рядов 106
1. Интегрирование и дифференцирование степенных рядов в действительной области —
2. Почленное дифференцирование рядов в комплексной области 110
3. Единственность разложения функции в степенной ряд 111
§ 16. Показательная и тригонометрические функции в комплексной области 114
1. Показательная функция в комплексной области —
2. Тригонометрические функции в комплексной области. Формулы Эйлера 115
§ 17. Некоторые приложения рядов 120
1. Вычисление значений функций и интегралов —
2. Вычисление пределов 121
3. Метод последовательных приближений 122
Глава V. Ряды Фурье 126
§ 18. Ортонормированные системы функций —
1. Введение —
2. Скалярное произведение функций 127
3. Ортонормированные системы функций 129
§ 19. Коэффициенты Фурье. Ряд Фурье 131
1. Коэффициенты Фурье —
2. Коэффициенты Фурье для тригонометрических систем функций 133
§ 20. Лемма Римана 135
1. Кусочно гладкие функции —
2. Лемма Римана 138
§ 21. Достаточные условия сходимости рядов Фурье 139
1. Формула для частичных сумм ряда Фурье —
2. Сходимость разложения кусочно гладких функций в ряды Фурье 141
3. Разложение функций, заданных на конечных промежутках, в ряд Фурье 143
4. Разложение четных и нечетных функций в ряды Фурье
5. Примеры разложения функций в ряды Фурье 144
Ответы к упражнениям 152

Предложения интернет-магазинов

Математика. 6 класс. Домашняя работа к учебнику Н. Я. Виленкина и др.

Автор(ы): Панов Николай Андреевич   Издательство: Спиши.ру, 2017 г.  Серия: Решебник

Цена: 59 руб.   Купить

В пособии решены и в большинстве случаев подробно разобраны задачи и упражнения из учебников "Математика. 6 класс: учеб. для общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 32-е изд., стер. - М.: Мнемозина, 2014" и "Математика: учеб. для 6 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 13-е изд., стереотип. - М.: Мнемозина, 2004". Пособие адресовано родителям, которые смогут проконтролировать правильность решения, а в случае необходимости помочь детям в выполнении домашней работы по математике. 2-е издание, стереотипное.


Математика. 5 класс. Домашняя работа к учебнику Н.Я. Виленкина и др. "Математика. 5 класс"

  Издательство: Спиши.ру, 2017 г.  Серия: Решебник

Цена: 62 руб.   Купить

В пособии решены и в большинстве случаев подробно разобраны задачи и упражнения из учебников "Математика. 5 класс: учеб. для учащихся общеобразоват. учреждений / Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, СИ. Шварцбурд. - 31-е изд., стер. - М.: Мнемозина, 2013" и "Математика: учеб. для 5 кл. общеобразоват. учреждений / Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, СИ. Шварцбурд. - 14-е изд., стереотип. - М.: Мнемозина, 2004". Пособие адресовано родителям, которые смогут проконтролировать правильность решения, а в случае необходимости помочь де­тям в выполнении домашней работы по математике. 11- издание, переработанное и исправленное


Словарь-тезаурус синонимов русского языка

Автор(ы): Бабенко Людмила Григорьевна   Издательство: АСТ-Пресс, 2017 г.  Серия: Словари русского языка

Цена: 1346 руб.   Купить

Словарь-тезаурус синонимов русской речи (идеографический словарь синонимов) - принципиально новое лексикографическое издание. В нем впервые показано, сколько синонимических рядов (и какие именно) входит в ту или иную смысловую (идеографическую) группу, т. е. соотносится с общим для этих рядов понятием (например, с понятиями "радость", "любовь", "счастье", "периоды жизни человека"). В словаре описано более 7528 синонимических рядов, включающих более 40 000 слов (39 246 единиц описания). Синонимические ряды с учетом иерархии отображаемых понятий распределены по 16 семантическим сферам, 430 идеографическим группам и подгруппам. Алфавитный указатель слов, включенных в синонимические ряды, помогает быстро найти не только синонимы искомого слова, но и те синонимические ряды, которые соотносятся с найденным рядом по общему идеографическому признаку (понятию). Словарь адресован самому широкому кругу читателей: филологам, специалистам в области русского языка и общего языкознания, преподавателям русского языка как родного и как иностранного, журналистам, писателям, работникам СМИ, редакторам, а также всем, кто любит русский язык и стремится использовать его неисчерпаемые богатства.