x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
Теория функций комплексного переменного и операционное исчисление, Галкин С.В., 2011

Теория функций комплексного переменного и операционное исчисление, Галкин С.В., 2011

Теория функций комплексного переменного и операционное исчисление, Галкин С.В., 2011.

  Рассмотрены два раздела общего курса математики для технических университетов: «Теория функций комплексного переменного» и «Операционное исчисление», а также теория числовых рядов, теория поля, ряды Фурье и преобразование Фурье. Приведены основные понятия и теоремы, доказательства теорем, примеры.

Операции над комплексными числами.
Определим операции над комплексными числами. Сложение и вычитание комплексных чисел в алгебраической форме введем следующим образом:
Z1 ± Z2 = (x1 ± х2 ) + i(y1 ± у2 ).

Здемсь оба числа записаны в алгебраической форме, например: (1 + 2i) + (1 - 2i) = 2. Числа z = х + iy, z = х - iy называются комплексно-сопряженными числами. Складывая их, получаем действительное число 2х, вычитая из числа z число z, получаем мнимое число 2iy.

Сложение или вычитание комплексных чисел соответствует сложению или вычитанию их радиус-векторов и может быть проведено по «правилу параллелограмма» или «правилу треугольника».

Предложения интернет-магазинов

Рекурсивные функции

Автор(ы): Марченков Сергей Серафимович   Издательство: Физматлит, 2007 г.

Цена: 293 руб.   Купить

Брошюра знакомит читателя с алгоритмически вычислимыми функциями натурального аргумента - рекурсивными функциями. Вначале изучается простейший тип рекурсивных функций - примитивно рекурсивные функции. Затем происходит расширение круга вычислимых функций: рассматриваются частично определенные вычислимые функции, а также всюду определенные вычислимые функции, не являющиеся примитивно рекурсивными. В заключение определяются абстрактные вычислительные устройства - машины Тьюринга, и класс функций, вычислимых на машинах Тьюринга, связывается с классом частично рекурсивных функций. Для школьников старших классов и студентов вузов, знакомящихся с основами теории алгоритмов.


Справочник по математическим формулам и графикам функций

Автор(ы): Старков Сергей Николаевич   Издательство: BHV, 2015 г.

Цена: 256 руб.   Купить

Справочник содержит 1200 формул и 1200 графиков. В первой части приводятся математические формулы и преобразования по программам средней школы, средних специальных и высших Учебных заведений. Вторая часть содержит уникальный сборник графиков функций и изображений линий на плоскости, систематизированных по виду функций, типу и уровню сложности преобразований (элементарных и ментарных). Для учащихся школ, средних специальных учебных заведений, студентов вузов, учителей и преподавателей.


Графики функций. Задачи и решения

Автор(ы): Просветов Георгий Иванович   Издательство: Альфа-Пресс, 2010 г.

Цена: 104 руб.   Купить

В учебно-практическом пособии рассмотрены основные методы исследования функций и построения их графиков. Приведенные в учебном материале примеры и задачи позволяют успешно овладеть знаниями по изучаемой дисциплине. Пособие содержит программу курса, задачи для самостоятельного решения с ответами и задачи для контрольной работы. Издание рассчитано на школьников, студентов, преподавателей и всех тех, кто интересуется математикой.


Задачи с параметрами. Применение свойств функций, преобразование неравенств

Автор(ы): Локоть Владимир Владимирович   Издательство: АРКТИ, 2010 г.  Серия: Абитуриент: Готовимся к ЕГЭ

Цена: 137 руб.   Купить

В первой части пособия рассмотрены задачи с параметрами, при решении которых используется область определения, множество значений, ограниченность и монотонность функций. Во второй части пособия рассмотрен целый ряд примеров, для решения которых удобно применять равносильные преобразования, быстро приводящие исходные неравенства (неравенства с модулем, иррациональные, показательные, логарифмические, тригонометрические) к рациональным неравенствам. Пособие адресовано учителям, студентам, учащимся 11-го класса. Материал может быть полезен при подготовке к Единому государственному экзамену (ЕГЭ).