x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
ВИДЕОКУРСЫ
Справочная книга по математической логике, Часть 2, Теория множеств, Барвайс Д., 1982

Справочная книга по математической логике, Часть 2, Теория множеств, Барвайс Д., 1982

Справочная книга по математической логике, Часть 2, Теория множеств, Барвайс Д., 1982.

  Настоящее издание состоит из четырех книг: «Теория моделей», «Теория множеств», «Теория рекурсии», «Теория доказательств и конструктивная математика». В оригинале оно составляло один том, который при переводе для удобства был разбит на четыре книги, соответствующие четырем частям исходной книги. Русский перевод каждой части дополнен статьей советских авторов, отражающей дополнительные аспекты, не нашедшие отражения в основном тексте издания. Издание в целом рассчитано на всех математиков, начиная со студентов университетов, интересующихся развитием современной математики и логики.

    Настоящая книга состоит из ряда глав и добавления, написанных видными специалистами по теории множеств. Каждая глава - это самостоятельная статья. Она содержит в основном замкнутый в себе материал и может читаться независимо от остальных глав сборника. Главы очень разные по характеру и подробности изложения. Например, глава 2, написанная Т. Иехом, представляет собой весьма беглый обзор проблематики и результатов, относящихся к аксиоме выбора.
   
    Написанная Берджесом глава 4 о методе вынуждения, напротив, дает довольно подробное изложение доказательств некоторых основных результатов. Упор в справочном руководстве по теории множеств сделан на разъяснение основных идей и методов аксиоматической теории множеств, а не на охват как можно большего числа результатов. В этом отношении наиболее показательна глава 5 о комбинаторике, написанная К. Кюненом. Вводная глава, принадлежащая Дж. Шенфилду, посвященная аксиоматике системы Цермело - Френкеля, доступна широкому кругу читателей. Наиболее трудна для чтения написанная К. Девлином глава 5 об аксиоме конструктивности, излагающая громоздкие конструкции и насыщенная большим количеством формул. В книгу включены также топологические приложения аппарата аксиоматической теории множеств. В главах б и 7, принадлежащих М. Рудин и И. Юхасу, рассматриваются топологические следствия аксиомы Мартина и различных комбинаторных принципов, вытекающих из аксиомы конструктивности Гёделя.

СОДЕРЖАНИЕ
§ 1. Введение
§ 2. Множества и образование множеств
§ 3. Аксиомы
§ 4. Развитие теории множеств
§ 5. Ординалы
§ 6. Аксиома выбора
§ 7. Классы
§ 8. Новые аксиомы