x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
ВИДЕОКУРСЫ
Теория вероятностей, Справочное пособие к решению задач, Гусак А.А., Бричикова Е.А., 2003

Теория вероятностей, Справочное пособие к решению задач, Гусак А.А., Бричикова Е.А., 2003

Теория вероятностей, Справочное пособие к решению задач, Гусак А.А., Бричикова Е.А., 2003.

   Справочное пособие предназначено для обучения студентов по учебному курсу "Теория вероятностей". Оно поможет при подготовке к практическим занятиям, зачётам и экзаменам, а студентам заочных отделений - самостоятельно выполнить контрольные работы.
В книгу включены разделы: события и вероятности; случайные величины, их распределения и числовые характеристики; некоторые законы распределения случайных величин; закон больших чисел, предельные теоремы. Пособие содержит 350 примеров с подробными решениями.
В конце каждого параграфа помещены задачи для самостоятельного решения, ответы к ним.

Классификация событий.
Опытом, или испытанием, называют всякое осуществление определенного комплекса условий или действий, при которых происходит соответствующее явление. Возможный результат опыта называют событием. Например, опытом является подбрасывание монеты, а событиями "герб", "цифра на верхней ее стороне" (когда монета упадет). Опытами являются стрельба по мишени, извлечение шара из ящика и т.п. События будем обозначать заглавными буквами латинского алфавита А, В, С,...

Событие называется достоверным в данном опыте, если оно обязательно произойдет в этом опыте. Например, если в ящике находятся только голубые шары, то событие "из ящика извлечен голубой шар" является достоверным (в ящике нет шаров другого цвета).

Событие называется невозможным в данном опыте, если оно не может произойти в этом опыте. Так, если в ящике находятся только красные шары, то событие "из ящика извечен голубой шар" является невозможным (таких шаров в ящике нет).

Событие называется случайным в данном опыте, если оно может произойти, а может и не произойти в этом опыте. Например, если в ящике находятся п голубых и т красных шаров, одинаковы по размеру и весу, то событие "из урны извлечен голубой шар" является случайным (оно может произойти, а может и не произойти, поскольку в урне имеются не только голубые, но и красные шары). Случайными событиями являются "герб" и "цифра на верхней стороне монеты при ее подбрасывании", "попадание и промах при стрельбе по мишени", "выигрыш по билету лотереи" и т.п.

Содержание
Введение
Глава 1. События и вероятности
§1.1. Классификация событий
§1.2. Классическое определение вероятности
§1.3. Комбинаторика и вероятность
§1.4. Частота события. Статистическое определение вероятности
§1.5. Геометрические вероятности
§1.6. Действия над событиями. Соотношения между событиями
§1.7. Аксиоматическое определение вероятности
§1.8. Сложение и умножение вероятностей
§1.9. Формула полной вероятности
§1.10. Формулы Бейеса
Глава 2. Случайные величины, их распределение и числовые характеристики
§2.1. Дискретные и непрерывные случайные величины. Закон распределения дискретной случайной величины
§2.2. Функция распределения
§2.3. Плотность распределения
§2.4. Математическое ожидание случайной величины
§2.5. Дисперсия случайной величины. Среднее квадратическое отклонение
§2.6. Моменты случайных величин
§2.7. Функции случайных величин
§2.8. Двумерные случайные величины
Глава 3. Некоторые законы распределения случайных величин
§3.1. Формула Бернулли
§3.2. Биномиальное распределение
§3.3. Распределение Пуассона
§3.4. Равномерное распределение
§3.5. Нормальное распределение
§3.6. Некоторые другие распределения :
Глава 4. Закон больших чисел. Предельные теоремы
§4.1. Неравенства Маркова и Чебышева :
§4.2. Теорема Чебышева. Теорема Бернулли
§4.3. Теоремы Лапласа
Глава 5. Из истории возникновения и развития теории вероятностей
§5.1. Предыстория теории вероятностей
§5.2. Первые сочинения по науке о случайном и статистике
§5.3. Возникновение понятия вероятности
§5.4. Основные теоремы теории вероятностей
§5.5. Развитие теории ошибок измерений
§5.6. Формирование понятий случайной величины, математического ожидания и дисперсии
Ответы на вопросы ;
Биографический словарь
Приложение
Литература.

Предложения интернет-магазинов

Математика. Теория вероятностей и дискретная математика: Элементы теории, решение задач

Автор(ы): Баюк Олег Александрович, Маркарян Елена Георгиевна   Издательство: Просвещение, 2013 г.  Серия: Сложные темы ЕГЭ

Цена: 377 руб.   Купить

Пособие предназначено учащимся общеобразовательных учреждений (школ, гимназий, колледжей) для углублённого изучения теории вероятностей и связанных с ней разделов дискретной математики (теории множеств, математической логики, комбинаторики, теории графов и математической статистики) в целях успешной сдачи ЕГЭ по математике. В пособии изложены основные теоретические сведения, необходимые для решения задач, приводятся решения типичных заданий ЕГЭ, а также содержатся задания для самостоятельной работы (с ответами, указаниями к решению или решениями). Книга может быть использована в качестве сборника задач на подготовительных курсах, факультативных занятиях, при самостоятельной подготовке к поступлению в вуз и при последующем обучении в вузе.


Высшая математика. Руководство к решению задач. Часть 2

Автор(ы): Лунгу Константин Никитович, Макаров Евгений Васильевич   Издательство: Физматлит, 2015 г.

Цена: 666 руб.   Купить

Учебное пособие написано на основе многолетнего опыта чтения лекций и проведения практических занятий по высшей математике в Московском государственном открытом университете на различных факультетах. Оно является продолжением части 1 одноименного учебного пособия и содержит указания по решению задач основного курса, начиная с неопределенного интеграла и заканчивая дифференциальными уравнениями, а также задач по теории вероятностей и математической статистике. Наряду с большим числом решенных задач, приводятся упражнения для самостоятельного решения; ко всем главам даны контрольные задания. Допущено Министерством образования и науки Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлениям подготовки и специальностям в области техники и технологии. 2-е издание, исправленное.


ЕГЭ по математике. Алгебра. Профильный уровень. Практическая подготовка

  Издательство: BHV, 2017 г.

Цена: 580 руб.   Купить

В книге рассмотрены традиционные разделы школьного курса алгебры на более высоком по сравнению с базовым уровне и разделы, не входящие в круг задач базового уровня, необходимые для сдачи ЕГЭ по математике профильного уровня: арифметические и алгебраические преобразования, преобразования графиков, показательные и логарифмические уравнения и неравенства, комбинаторика и элементы теории вероятностей. Разбор текстовых задач по этим темам приведен в соответствующих главах. В каждой главе кратко представлены необходимые теоретические сведения, большое количество задач с комментариями и решениями, приведены подходы и методы решения классов задач, задачи для самостоятельного решения. Ответы даются в конце пособия. Книга предназначена учащимся с базовым уровнем математической подготовки. Ее можно использовать для самостоятельной подготовки к профильному уровню ЕГЭ, на уроках, факультативных занятиях, подготовительных курсах, индивидуально с репетитором. - Необходимая справочная теория - Разбор сложных задач по каждой теме - Приемы, рекомендации и комментарии при решении задач - Большое количество задач для самостоятельного решения


Геометрия в таблицах 7-11 класс. Справочное пособие

Автор(ы): Звавич Леонид Исаакович, Рязановский Андрей Рафаилович   Издательство: Дрофа, 2016 г.  Серия: Геометрия

Цена: 179 руб.   Купить

Пособие содержит таблицы по всем наиболее важным разделам школьного курса геометрии: планиметрии и стереометрии. В таблицах кратко изложена теория по каждой теме, приведены основные формулы, примеры решения типовых задач. В конце книги помещен предметный указатель. Пособие будет полезно учащимся 7-11 классов, абитуриентам, студентам, учителям и родителям. 21-е издание, стереотипное.