x-uni.com
x-uni.com
x-uni.com
Математика
Биология
Литература
Русский язык
География
Физика
Химия
История
Английский
Информатика
География
Информатика
Энциклопедия элементарной математики, Том 5, Геометрия, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1966

Энциклопедия элементарной математики, Том 5, Геометрия, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1966

Энциклопедия элементарной математики, Том 5, Геометрия, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1966.

   Эта статья посвящена основным вопросам теории площадей и объемов - их определению, свойствам и вычислению. Площадь изучается только па плоскости. Определение площади кривой поверхности требует совсем других средств).

   Предполагается, что читатель знаком с теорией длин прямолинейных отрезков (см. стр. 89-94). Напомним, что в основе этой теории лежит выбор единичного отрезка. Если единичный отрезок заменяется другим отрезком, то длины всех отрезков делятся на старую длину повою единичного отрезка. Площади и объемы тоже зависят от выбора единичного отрезка. Эта зависимость изучается в специальном добавлении, помещенном после статьи. В самой статье единичный   отрезок   считается   фиксированным раз и навсегда.
Требования к общей подготовке читателя почти всюду ограничиваются самыми начальными сведениями о множествах, функциях и последовательностях (свойства сложения, вычитания и пересечения множеств; общее понятие числовой функции; границы числовых множеств; предел последовательности). Немногие менее элементарные пункты отмечены звездочкой и могут быть пропущены без ущерба для понимания остального.
Наименее элементарной проблемой теории площадей и объемов является их вычисление: сколько-нибудь полное рассмотрение этой проблемы требует интегрального исчисления, притом привлечения не только простых, но и кратных интегралов, включая переход к криволинейным координатам. Понятно, что такие сложные вещи не могут излагаться в элементарной статье. Приходится ограничиться несколькими формулами, выражающими площади и объемы через простые интегралы.

Содержание
Площадь и объем.

(В.А.Рохлин)
§ 1. Введение: что такое площадь?
§ 2. Класс многоугольных фигур.
§ 3. Площадь на классе многоугольных фигур.
§ 4. Класс квадрируемых фигур.
§ 5. Площадь на классе квадрируемых фигур.
§ 6. Другое построение теории площадей.
§ 7. Объем.
Добавление. Площадь и объем в геометрии подобия.
Литература.
Длина кривой и площадь поверхности.
(В.Г.Болтянский)
§ 1. Длины ломаных линий.
§ 2. Простые дуги.
§ 3. Спрямляемые линии.
§ 4. Длина на классе спрямляемых линий.
§ 5. О понятии площади поверхности.
Литература.
Равносоставленность многоугольников и многогранников.
(В.Г.Болтянский)
§ 1. Введение.
§ 2. Равносоставленность многоугольников.
§ 3. Равносоставленность многогранников.
Литература.
Выпуклые фигуры и тела.
(В.Г.Болтянский, И.М.Яглом)
§ 1. Определение и основные свойства.
§ 2. Простейшие метрические характеристики выпуклых фигур.
§ 3. Выпуклые многоугольники и многогранники.
§ 4. Периметр, площадь, объем.
§ 5. Выпуклые тела в многомерных пространствах.
§ 6. Некоторые задачи комбинаторной геометрии.
Литература.
Геометрические задачи на максимум и минимум.
(В.Г.Болтянский, И.М.Яглом)
§ 1. Наибольшие и наименьшие значения функций.
§ 2. Знаменитые геометрические задачи.
§ 3. Задачи на максимум и минимум, связанные с выпуклыми фигурами.
Литература.
Многомерные пространства.
(Б.А.Розенфельд, И.М.Яглом)
§ 1. Определение многомерного пространства.
§ 2. Прямые и плоскости.
§ 3. Шары и сферы.
§ 4. Многогранники.
Литература.
Неевклидовы геометрии.
(Б.А.Розенфельд, И.М.Яглом)
§ 1. Возникновение неевклидовой геометрии Лобачевского.
§ 2. Неевклидова геометрия Римана.
§ 3. Псевдоевклидова геометрия.
§ 4. Неевклидова геометрия Лобачевского.
§ 5. Неевклидова геометрия Галилея.
§ 6. Неевклидовы геометрии и группы преобразований.
§ 7. Некоторые другие геометрические системы.
Литература.
Основные топологические понятия.
(В.А.Ефремович)
Введение.
§ 1. Линии и поверхности.
§ 2. Многообразия.
§ 3. Общие топологические понятия.
Литература.
Конические сечения.
(3.А.Скопец)
§ 1. Различные определения конических сечений.
§ 2. Эллипс.
§ 3. Гипербола.
§ 4. Парабола.
§ 5. Некоторые общие свойства конических сечений.
Литература.
Именной указатель.
Предметный указатель.

Предложения интернет-магазинов

Справочник по элементарной математике

Автор(ы): Выгодский Марк Яковлевич   Издательство: АСТ, 2016 г.

Цена: 291 руб.   Купить

Справочник содержит все определения, правила, формулы и теоремы элементарной математики, а также математические таблицы. Предметный указатель и подробное содержание позволяют легко и быстро получать необходимую информацию. Книга адресована учащимся и учителям общеобразовательных учреждений, колледжей и лицеев.


Основные методы решения задач по элементарной математике. Пособие для абитуриентов

Автор(ы): Лунгу Константин Никитович, Макаров Евгений Васильевич   Издательство: Физматлит, 2015 г.

Цена: 967 руб.   Купить

В пособии отражены основные разделы элементарной математики, входящие в программу средней школы. Приведены задачи по темам, которые в школьной программе представлены недостаточно: обратные тригонометрические функции, текстовые задачи и др. Отдельную часть составляют тесты для подготовки к ЕГЭ. Рекомендуется абитуриентам, готовящимся к поступлению в вузы технического и экономического профилей, школьникам старших классов для углубленного изучения математики, а также преподавателям средних школ для работы с учащимися.


Практические приложения математики в школе

Автор(ы): Егупова Марина Викторовна   Издательство: Прометей, 2015 г.

Цена: 585 руб.   Купить

Предлагаемое издание знакомит читателя с методикой практико-ориентированного обучения математике в школе. Вопросы обучения школьников практическим приложениям математики рассмотрены в историческом и современном контексте, проиллюстрированы примерами задач. Пособие подготовлено на кафедре элементарной математики и методики обучения математике МПГУ и адресовано студентам, аспирантам и преподавателям математических факультетов вузов педагогической направленности, а также учителям математики общеобразовательных школ, желающим повысить свою квалификацию в этом направлении.


Геометрия. 11 класс. Учебник. Углубленный уровень. ФГОС

Автор(ы): Александров Александр Данилович, Рыжик Валерий Идельевич, Вернер Алексей Леонидович   Издательство: Просвещение, 2014 г.  Серия: Математика и информатика

Цена: 713 руб.   Купить

Линия УМК "Александров А. Д. (10-11 классы) (Профильный/Углублённый)" Содержание учебника соответствует ФГОС. Учебник содержит материалы, которые могут быть элективными курсами: 1) выпуклые фигуры; 2) многогранники; 3) теория поверхностей и сферическая геометрия; 4) преобразования; 5) современная геометрия. Изложение геометрии в учебнике сочетает наглядность и логичность. При этом обращается внимание на практическое применение геометрии, её связь с искусством, техникой, архитектурой. Теоретический и задачный материалы дифференцированы. О дифференциации задач говорят рубрики внутри задачного материала, ориентирующие учителей и учеников в этом материале: "Смотрим", "Дополняем теорию", "Планируем", "Доказываем", "Исследуем", "Участвуем в олимпиаде", "Прикладная геометрия", "Поступаем в вуз" и др. В рубриках "Разбираемся в решении" предлагаются образцы решения задач. Такая структура системы задач оптимально отражает все три составляющие самой геометрии: логику, наглядное воображение и практику. Авторы ведут рассказ и об истории геометрии от великих геометров Древней Греции до создателей неевклидовой геометрии и работ по современной геометрии. Таким образом, изложение геометрии в этих учебниках не является набором формул и теорем, а представляет собой живую, развивающуюся науку.