x-uni.com
регистрация / вход
сейчас на линии 99 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 99 чел.
Нелинейная механика деформируемого твердого тела, Золочевский А.А., Склепус А.Н., 2011

Нелинейная механика деформируемого твердого тела, Золочевский А.А., Склепус А.Н., 2011

Нелинейная механика деформируемого твердого тела, Золочевский А.А., Склепус А.Н., 2011.

  Монография представляет собой объединение элементов теории нелинейной упругости, теории пластичности, теории ползучести и теории повреждаемости вследствие ползучести. При изложении материала акцент делается на учет и адекватное описание зависимости деформационных характеристик изотропных и анизотропных тел от вида нагружения, a также на численно-аналитические методы решения начально-краевых задач. Приведено большое число тестовых примеров, результатов экспериментов, задач и компьютерных алгоритмов. Для инженерно-технических и научных работников, а также студентов университетов.

Диаграммы деформирования при растяжении и сжатии.
Перейдем к более подробному анализу закономерностей деформирования материалов. Для этого рассмотрим диаграммы деформирования, полученные при мгновенном нагружении в условиях одноосного растяжения и одноосного сжатия. «Мгновенность» нагружения необходимо понимать в том смысле, что для рассматриваемых механических свойств материалов можно пренебречь зависимостью деформационных характеристик от времени. Другими словами, не учитываются эффекты ползучести, а материалы принимаются находящимися в упругом или упругопластическом состоянии. Отметим также, что все подробности, относящиеся к методике проведения одноосных экспериментов при растяжении и сжатии, включая выбор образцов и скоростей нагружения, описание средств испытаний и т.п., можно найти в многочисленной литературе.

Диаграммы деформирования различных материалов не совпадают при одноосном растяжении и одноосном сжатии, что свидетельствует о разносопротивляемости материалов растяжению-сжатию. По-видимому, впервые на возможность неодинакового деформирования материалов в условиях растяжения и сжатия обратил внимание И. Ходкинсон еще в 1839 г. [29]. В серии экспериментов на чугуне он установил, что материал следует параболическому закону деформирования и неодинаково сопротивляется растяжению и сжатию. Однако в 19 веке основное внимание механики уделяли линейной теории упругости, и у И. Ходкинсона нашлось мало последователей. Исследование в этом направлении проводили лишь [29] Сен-Венан (1864), Э. Винклер (1878), А. Кеннеди (1887), X. Бир (1892), Э. Хартиг (1893), Дж. Бах (1897), которые, подтвердив экспериментальные отклонения от линейности на диаграммах при растяжении и сжатии, предлагали различные аппроксимации связи деформации с напряжением в одноосном случае с учетом разносопротивляемости растяжению-сжатию.

ОГЛАВЛЕНИЕ
Предисловие
ЧАСТЬ 1. Механика изотропных и анизотропных тел с деформационными характеристиками, зависящими от вида нагружения
Введение
Глава 1. Состояние проблемы и основные цели первой части монографии
1.1. Зависимость деформационных характеристик от вида нагружения
1.2. Анализ определяющих уравнений нелинейного деформирования изотропных сред
1.3. Анализ физических зависимостей для анизотропных сред
1.4. Решение краевых задач для тел с характеристиками, зависящими от вида нагружения
1.5. Основные цели и задачи первой части монографии
Глава 2. Определяющие уравнения для изотропных сред с характеристиками, зависящими от вида нагружения
2.1. Обсуждение роли инвариантов напряжений в определяющих уравнениях на основе экспериментов при сложном напряженном состоянии
2.2. Построение определяющих уравнений
2.3. Конкретизация определяющих уравнений
2.4. Сравнение теоретических и экспериментальных результатов.
2.5. Выводы по второй главе
Глава 3. Определяющие уравнения для анизотропных сред, характеристики которых зависят от вида нагружения
3.1. Вывод определяющих уравнений
3.2. Конкретизация определяющих зависимостей
3.3. Сопоставление расчетных и экспериментальных результатов
3.4. Выводы по третьей главе
Глава 4. Нелинейное деформирование осесимметрично нагруженных тонких оболочек
4.1. Постановка и методика решения одномерных краевых задач для тонких оболочек
4.2. Нелинейно-упругое деформирование оболочек
4.3. Упругопластическое деформирование оболочек
4.4. Нелинейно-упругое деформирование оболочек с учетом усадки
4.5. Ползучесть оболочек
4.6. Нелинейное деформирование составных оболочечных конструкций
4.7. Выводы по четвертой главе
Глава 5. Нелинейные задачи теории тонких оболочек при неосесимметричном нагружении
5.1. Постановка и методика решения двумерных краевых задач.
5.2. Нелинейно-упругое деформирование неосесимметрично нагруженных оболочек
5.3. Ползучесть неосесимметрично нагруженных оболочек
5.4. Выводы но пятой главе
Глава 6. Нелинейное деформирование прямоугольных в плане пространственных тел
6.1. Постановка и методика решения трехмерных краевых задач
6.2. Нелинейно-упругое деформирование прямоугольных в плане тел
6.3. Ползучесть прямоугольных в плане тел
6.4. Выводы по шестой главе
Глава 7. Нелинейное деформирование толстостенных цилиндров
7.1. Постановка и методика решения двумерных краевых задач
7.2. Упругопластическое деформирование цилиндрических тел
7.3. Ползучесть толстостенных цилиндров
7.4. Выводы по седьмой главе
Заключение
Литература
ЧАСТЬ 2. Ползучесть пластинчатых элементов конструкций сложной формы
Введение
Глава 1. Модели ползучести материлов, общая постановка и методы решения задач ползучести пластин
1.1. Модели ползучести, повреждаемости и разрушения
1.2. Основные соотношения
1.3. Определяющие уравнения ползучести
1.4. Методы исследования ползучести пластин
1.5. Краевая задача и структура ее решения
1.6. Выводы по первой главе
Глава 2. Разработка структурного метода для решения задач ползучести пластин
2.1. Вариационная постановка задачи ползучести на основе функционала Сандерса, Мак-Комба и Шлехте
2.2. Вариационная постановка задачи ползучести на основе функционала в форме Лагранжа
2.3. Метод решения начально-краевых задач ползучести пластин
2.4. Развитие конструктивных средств теории R-функций для решения задач ползучести пластин
2.5. Выводы по второй главе
Глава 3. Исследование ползучести пластин сложной формы
3.1. Алгоритм расчета и краткая характеристика программного комплекса
3.2. Решение тестовых задач и анализ достоверности результатов
3.3. Ползучесть пластин сложной формы, нагруженных силами в плоскости
3.4. Изгиб пластин сложной формы при ползучести
3.5. Решение задач изгиба пластин со смешанными условиями закрепления
3.6. Расчеты на ползучесть плоских днищ и трубных досок высокотемпературных установок
3.7. Выводы по третьей главе
Заключение
Литература
ЧАСТЬ 3. Ползучесть и повреждаемость тел сложной формы из материалов с характеристиками, зависящими от вида нагружения
Введение
Глава 1. Анализ современного состояния теории определяющих соотношений для повреждающихся сред и методов решения начально-краевых задач ползучести
1.1. Механика континуальной поврежденности. Классификация основных видов повреждаемости
1.2. Ползучесть и повреждаемость вследствие ползучести в базовых экспериментах
1.3. Ползучесть и повреждаемость вследствие ползучести при сложном напряженном состоянии
1.4. Обзор методов решения начально-краевых задач ползучести и повреждаемости
1.5. Выводы по первой главе
Глава 2. Построение и обоснование определяющих соотношений теории ползучести для повреждающихся материалов с характеристиками, зависящими от вида нагружения
2.1. Термодинамические основы моделирования процессов деформирования твердых тел. Потенциал ползучести
2.2. Построение определяющих уравнений ползучести для повреждающихся материалов с характеристиками, зависящими от вида нагружения
2.3. Базовые эксперименты
2.4. Частные случаи определяющих соотношений
2.5. Первая стадия ползучести
2.6. Вторая стадия ползучести
2.7. Третья стадия ползучести
2.8. Выводы по второй главе
Глава 3. Разработка методики решения начально-краевых задач ползучести для тел произвольной формы из повреждающихся материалов с характеристиками, зависящими от вида нагружения
3.1. Вариационные принципы теории ползучести. Основные уравнения
3.2. Постановка начально-краевых задач ползучести
3.3. Разработка метода решения начально-краевых задач ползучести на базе методов R-функций и Рунге-Кутта-Мерсона
3.4. Структуры решения для трехмерных задач ползучести
3.5. Выводы по третьей главе
Глава 4. Плоские и осесимметричные задачи ползучести и повреждаемости вследствие ползучести
4.1. Основные соотношения обобщенного плоского напряженного состояния
4.2. Основные соотношения плоского деформированного состояния
4.3. Вариационная формулировка плоской задачи теории ползучести. Уравнения равновесия. Граничные условия
4.4. Задача Коши по времени для плоской задачи ползучести
4.5. Структуры решения для плоских задач теории ползучести
4.6. Основные соотношения осесимметричной задачи ползучести.
4.7. Вариационная постановка осесимметричной задачи ползучести. Граничные условия. Задача Коши по времени
4.8. Структуры решения для осесимметричных задач ползучести
4.9. Решение тестовых задач
4.10. Ползучесть пластин сложной формы из повреждающихся материалов с характеристиками, зависящими от вида нагружения
4.11. Ползучесть и повреждаемость осесимметрично нагруженного тела вращения сложной формы
4.12. Выводы по четвертой главе
Глава 5. Ползучесть и повреждаемость пологих оболочек и пластин сложной формы
5.1. Вариационная формулировка задач ползучести и повреждаемости пологих оболочек и пластин
5.2. Структуры решения для основных видов граничных условий. Задача Коши по времени
5.3. Численные исследования ползучести и повреждаемости пологих оболочек и пластин сложной формы
5.5. Выводы по пятой главе
Глава 6. Ползучесть и повреждаемость гибких пологих оболочек и пластин сложной формы
6.1. Математическая постановка задач ползучести и повреждаемости гибких пологих оболочек и пластин
6.2. Численные исследования влияния вида нагружения на ползучесть и повреждаемость гибких пологих оболочек и пластин
6.3. Выводы по шестой главе
Глава 7. Задачи ползучести и повреждаемости пологих оболочек средней толщины
7.1. Вариационная постановка задач ползучести пологих оболочек средней толщины
7.2. Структуры решения для основных типов граничных условий. Задача Коши по времени
7.3. Численные исследования ползучести и повреждаемости пологих оболочек и пластин средней толщины
7.4. Численные исследования ползучести и повреждаемости пластин средней толщины из материала с характеристиками, зависящими от вида нагружения
7.5. Выводы по седьмой главе
Заключение
Литература
Оглавление.

Скачать бесплатно на сайте fileskachat.com

Предложения интернет-магазинов

Сверхпроводимость

Автор(ы): Гинзбург Виталий, Андрюшин Евгений   Издательство: Альфа-М, 2006 г.  Серия: Библиотека СОИ

Цена: 250 руб.   Купить

Описывается явление сверхпроводимости - одно из самых сложных в физике твердого тела, рассматриваются необычные свойства металлов при низких температурах, приводятся примеры их использования в технике, а также сведения о современных открытиях в физике. Для учащихся старших классов. Бумага мелованная.


Физика. 7 класс. Тесты к учебнику А. В. Перышкина. ВЕРТИКАЛЬ. ФГОС

Автор(ы): Ханнанов Наиль Кутдусович, Ханнанова Татьяна Андреевна   Издательство: Дрофа, 2015 г.  Серия: Физика

Цена: 169 руб.   Купить

Пособие представляет собой сборник тестов для тематического и рубежного контроля. Может быть использовано как при работе с учебником, соответствующим ФК ГОС, так и при работе с учебником, соответствующим ФГОС. Тесты для текущего контроля составлены по темам "Введение", "Строение вещества", "Характеристики движения. Скорость", "Масса и плотность", "Силы", "Давление твердого тела", "Давление газов и жидкостей", "Закон Архимеда", "Работа, мощность, энергия", "Простые механизмы. Преобразование энергии". Цель рубежного теста - проверить достижение предметных и метапредметных результатов, установленных ФГОС. 2-е издание, переработанное.


Сложные темы. Употребление твердого и мягкого знаков. 5-9 классы. ФГОС

Автор(ы): Новикова Лариса Ивановна, Соловьева Наталья Юрьевна   Издательство: Экзамен, 2015 г.  Серия: Сложные темы

Цена: 71 руб.   Купить

Данное пособие полностью соответствует федеральному государственному образовательному стандарту (второго поколения). Учебное пособие "Употребление твёрдого и мягкого знаков" предназначено для повышения орфографической грамотности и культуры речи. Пособие состоит из пяти разделов. Первый раздел теоретический. В нем представлены основные орфографические правила употребление твёрдого и мягкого знаков, показаны трудности, связанные с применением данных правил, даны примеры наиболее часто встречающихся "ошибкоопасных" слов. Во втором разделе помещен обширный материал для практических упражнений - тренировка на уровне слов, предложений, текстов. Далее следует "Обратная связь"? задания в форме тестов, составленных в соответствии с форматом ОГЭ. Заключают пособие "Ключи к упражнениям и тестам" и небольшой словарь "трудных" слов по рассматриваемой орфографической теме. Данное пособие может быть использовано как старшеклассниками, желающими научиться грамотно писать, так и учителями для углубленной работы по орфографии с учениками. Приказом № 729 Министерства образования и науки Российской Федерации учебные пособия издательства "Экзамен" допущены к использованию в общеобразовательных организациях.


Физика. 7 класс. Рабочая тетрадь к учебнику А.В. Перышкина. Вертикаль. ФГОС

Автор(ы): Ханнанова Татьяна Андреевна, Ханнанов Наиль Кутдусович   Издательство: Дрофа, 2015 г.  Серия: Физика

Цена: 172 руб.   Купить

Пособие является составной частью УМК А.В. Перышкина "Физика. 7-9 классы", который переработан в соответствии с требованиями нового Федерального государственного образовательного стандарта. В комплекс входят учебник, электронное приложение к учебнику, тесты, дидактические материалы и дидактические карточки-задания. В рабочую тетрадь включены расчетные и графические задачи, экспериментальные задания, а также задания с выбором ответа по темам: "Введение", "Строение вещества", "Характеристики движения. Скорость", "Масса и плотность", "Сила", "Давление твердого тела", "Давление газов и жидкостей", "Закон Архимеда", "Работа, мощность, энергия". В конце пособия помещены "Тренировочный тест" по каждой теме и "Итоговый тест" для подготовки учащихся к сдаче ГИА. Задания повышенной сложности отмечены звездочкой, задания с использованием электронного пособия - специальным значком. Пособие предназначено для организации самостоятельной работы учащихся при изучении нового материала, закрепления и проверки полученных знаний по физике. 4-е издание, стереотипное.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!