x-uni.com
регистрация / вход
сейчас на линии 68 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 68 чел.
LXV Московская математическая олимпиада, Математический праздник, Арнольд В.Д., 2002

LXV Московская математическая олимпиада, Математический праздник, Арнольд В.Д., 2002

LXV Московская математическая олимпиада, Математический праздник, Арнольд В.Д., 2002.

Задача №5. Илье Муромцу, Добрыне Никитичу и Алеше Поповичу за верную службу дали 6 монет: 3 золотых и 3 серебряных. Каждому досталось по две монеты. Илья Муромец не знает, какие монеты достались Добрыне, а какие Алёше, но знает, какие монеты достались ему самому. Придумайте вопрос, на который Илья Муромец ответит «да», «нет» или «не знаю», и по ответу на который Вы сможете понять, какие монеты ему достались. [6 баллов] (А. Чеботарёв)
Решение. Вот пример такого вопроса: «Правда ли, что у тебя золотых монет больше, чем у Алёши Поповича?»
Если у Ильи Муромца две золотые монеты, он скажет «да», поскольку у Алёши Поповича не может быть больше одной золотой монеты.
Если обе монеты Ильи серебряные, то у Алёши хотя бы одна золотая, и Илья Муромец ответит «нет».
Ну а если ему достались разные монеты, то он ответит «не знаю», так как у Алёши может оказаться как две золотые, так и две серебряные монеты.
Конечно, можно было задать и другие вопросы, например:
— Правда ли, что одному из двух других богатырей достались две серебряные монеты?
—  Верно ли, что два других богатыря получили хотя бы по одной золотой монете каждый?
— Если я заберу у тебя одну монету и дам вместо нее золотую, станет ли у тебя больше золотых?
(Заметьте, что в последнем вопросе не упоминаются монеты двух других богатырей, а только монеты, доставшиеся Илье Муромцу!)

Задача №6. В шахматном турнире на звание мастера спорта участвовало 12 человек, каждый сыграл с каждым по одной партии. За победу в партии даётся 1 очко, за ничью — 0,5 очка, за поражение — 0 очков. По итогам турнира звание мастера спорта присваивали, если участник набрал более 70% от числа очков, получаемых в случае выигрыша всех партий. Могли ли получить звание мастера спорта а) 7 участников [4 балла]; б) 8 участников [6 баллов]? (Е. Иванова)
Решение. Докажем от противного, что получить звание мастера могли не более 7 участников турнира. Пусть их было 8. Тогда каждый набрал не менее 0,7-11 = 7,7 очка, то есть не менее 8 очков. Таким образом, все они в сумме набрали не менее 8 * 8 = 64 очков. При этом в партиях с участниками, не получившими звание мастера, каждый из них набрал не более 4 очков (даже если выиграл все партии). Это даёт не более 4 • 8 = 32 очков.
Значит, участники, ставшие мастерами, должны были набрать в партиях между собой не менее 32 очков.
Подсчитаем, сколько партий сыграли между собой эти 8 мастеров. Если мы будем результаты партии записывать в таблицу 8x8, то у нас останется свободной диагональ (так как партий с самим собой не играется) и на каждую партию будет выделено по две клетки: в строке одного из игроков и в строке другого. Таким образом, партий будет  28. В каждой партии разыгрывается одно очко, поэтому в этих партиях мастера в сумме наберут ровно 28 очков, что меньше 32. Противоречие.

Скачать бесплатно на сайте fileskachat.com
Скачать бесплатно на сайте yadi.sk

Предложения интернет-магазинов

Математическая разминка. 2 класс. Устный счет в трех уровнях

Автор(ы): Полникова М. Ю.   Издательство: Смио-Пресс, 2013 г.

Цена: 149 руб.   Купить

Математическая разминка. 2 класс. Устный счет в трех уровнях. Учебное пособие по математике для учащихся 2 класса. 2-е издание.


Математическая разминка. 4 класс. Устный счет в трех уровнях

Автор(ы): Полникова М. Ю.   Издательство: Смио-Пресс, 2012 г.

Цена: 184 руб.   Купить

Математическая разминка. 4 класс. Устный счет в трех уровнях. Учебное пособие по математике для учащихся 4 класса.


Ура! Праздник. В начальной школе. Учебно-методическое пособие

Автор(ы): Кербицкова Нина Леонидовна   Издательство: Педагогическое общество России, 2005 г.  Серия: Начальная школа

Цена: 47 руб.   Купить

"Ура! Праздник. В начальной школе. Сценарии выпускных утренников в 1-м,2-м,3-м классах; праздники "День Нептуна", "У Осени в гостях"; фольклорный праздник "Осенние посиделки"." В учебно-методическом пособии представлены авторские разработки летних и осенних школьных праздников для младших школьников. Пособие предназначено для учителей начальных классов, педагогов дополнительного образования, вожатых детских оздоровительных лагерей.


Французский язык. Всероссийская олимпиада школьников 2012 (+CD)

Автор(ы): Бубнова Галина Ильинична   Издательство: Люмьер, 2012 г.

Цена: 423 руб.   Купить

Всероссийская олимпиада школьников проводится ежегодно по 22 предметам и представляет собой экспериментальную площадку для разработки новых методов оценивания соответствующей предметной компетентности. Представленный в издании комплект материалов подготовлен в 2011-2012 учебном году для проведения регионального и заключительного этапов ВОШ по французскому языку и включает олимпиадные задания, аудиодиск с полной процедурой прослушивания устных текстов, ключи, критерии оценивания творческих работ и методическое сопровождение для преподавателей и учащихся. Материалы издания помогут в подготовке к олимпиадам и квалификационным экзаменам разного уровня.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!