x-uni.com
регистрация / вход
сейчас на линии 50 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 50 чел.
Алгебра на вступительных экзаменах по математике в МГУ, Фалин Г.И., Фалин А.И., 2006

Алгебра на вступительных экзаменах по математике в МГУ, Фалин Г.И., Фалин А.И., 2006

Алгебра на вступительных экзаменах по математике в МГУ, Фалин Г.И., Фалин А.И., 2006.

   В книге собрано более 1500 задач по алгебре, предлагавшихся на вступительных испытаниях по математике в Московском государственном университете (как основных, так и предварительных), а также задачи тестов и выпускных экзаменов подготовительного отделения МГУ. Задачи сгруппированы по типам, что позволяет составить представление об основных темах, затрагиваемых на экзаменах, а также об основных методах решения рассматриваемых видов задач. Ко всем задачам даны ответы. Для наиболее характерных задач приведены подробные решения.
Книга будет полезна абитуриентам при подготовке к вступительным экзаменам по математике в МГУ.

   Данное учебное пособие предназначено для подготовки к вступительным экзаменам по математике в МГУ. Оно составлено на основе задач, предлагавшихся на вступительных экзаменах по математике в МГУ им. М. В. Ломоносова, факультетских олимпиадах (которые фактически являются предварительными экзаменами), задач заочных туров и тестов, а также задач выпускных экзаменов подготовительного отделения.
Задачи вступительных испытаний по математике (как письменных, так и устных) ежегодно публикуются в «Справочнике для поступающих в Московский университет», разнообразных сборниках, регулярно издаваемых механико-математическим факультетом, факультетом вычислительной математики и кибернетики, физическим факультетом, другими факультетами. В этих изданиях задачи письменных экзаменов Публикуются в виде вариантов, реально предлагавшихся на вступительных испытаниях, а задачи устных экзаменов публикуются общим списком. В этом виде задачи полезны на заключительном этапе подготовки, когда абитуриент репетирует будущий экзамен. Подготовка к экзамену по математике в строгом смысле этого слова предполагает изучение материала в определенной последовательности. Эта последовательность определяется методическими взглядами преподавателя.

ОГЛАВЛЕНИЕ
Предисловие 7
Задачи
Глава 1. Алгебраические преобразования 9
1.1. Арифметические вычисления с дробями 9
1.2. Многочлены 9
1.3. Алгебраические дроби 11
1.4. Доказательство неравенств 12
1.4.1. Среднее арифметическое и среднее геометрическое 12
1.4.2. Среднее гармоническое 14
1.4.3. Неравенство Коши—Буняковского 14
1.4.4. Неравенство треугольника 15
1.4.5. Неравенство Бернулли 15
1.4.6. Прочее 15
1.5. Радикалы 17
1.6. Степени 20
1.7. Логарифмы 20
Глава 2. Уравнения 27
2.1. Рациональные уравнения 27
2.1.1. Целые рациональные (алгебраические) уравнения 27
2.1.2. Дробно-рациональные уравнения 30
2.1.3. Уравнения, включающие функции [х] и {х} 31
2.2. Уравнения с радикалами 32
2.2.1. Решение возведением в степень 32
2.2.2. Метод введения новой неизвестной 34
2.2.3. Использование специфических преобразований выражений с радикалами 37
2.2.4. Уравнения вида уа + у/ь = уг 38
2.2.5. Графический метод 39
2.2.6. Метод оценок 40
2.3. Показательные уравнения 42
2.3.1. Уравнения, приводимые к виду ах = а9 42
2.3.2. Метод введения новой неизвестной г 44
2.3.3. Графический метод 47
2.3.4. Метод оценок 48
2.4. Логарифмические уравнения 49
2.4.1. Уравнения, приводимые к виду loga f(x) = logag(x) 49
2.4.2. Метод введения новой неизвестной 52
2.4.3. Графический метод и метод оценок 56
2.5. Функциональные уравнения 57
Глава 3. Неравенства 60
3.1. Алгебраические неравенства 60
3.1.1. Линейные и квадратичные неравенства 60
3.1.2. Неравенства, содержащие функции [х] и {х} 61
3.1.3. Дробные неравенства и неравенства высших степеней 61
3.2. Задачи с модулями 64
3.2.1. Универсальный метод решения 64
3.2.2. Метод введения новой неизвестной 67
3.2.3. Специальные методы решения 68
3.3. Уравнения и неравенства, включающие функции шах и min 72
3.4. Показательные неравенства 73
3.4.1. Неравенства, приводимые к виду а^х^ < а9^ 73
3.4.2. Метод введения новой неизвестной 76
3.4.3. Графический метод и метод оценок 79
3.5. Логарифмические неравенства 79
3.5.1. Неравенства, приводимые к виду loga/(x) < loga^(x) 79
3.5.2. Метод введения новой неизвестной 87
3.5.3. Графические методы и метод оценок 91
3.6. Неравенства с радикалами 93
3.6.1. Метод введения новой неизвестной 03
3.6.2. Решение возведением в степень 95
3.6.3. Более сложные преобразования 97
3.6.4. Графический метод и метод оценок 101
Глава 4. Системы 102
4.1. Метод исключения 102
4.2. Метод введения новых неизвестных 108
4.2.1. Тригонометрические подстановки 113
4.3. Выделение в системе квадратного трехчлена 113
4.4. Другие специальные преобразования 115
4.5. Графический метод 116
4.6. Метод оценок 117
Глава 5. Области на координатной плоскости 119
5.1. Многоугольники 119
5.2. Фигуры, связанные с окружностью 1Й0
5.3. Более сложные фигуры 123
5.4. Области на двумерной целочисленной решетке 125
Глава 6. Прогрессии и числовые последовательности 128
6.1. Текстовые задачи на прогрессии ....." 128
6.1.1. Арифметическая прогрессия. 128
6.1.2. Геометрическая прогрессия 132
6.1.3. Бесконечно убывающая геометрическая прогрессия 135
6.1.4. Смешанные задачи 135
6.2. Функциональные уравнения для последовательностей 137
6.3. Суммирование числовых последовательностей 138
Глава 7. Задачи с целочисленными переменными 142
7.1. Признаки делимости 142
7.2. Основная теорема арифметики 142
7.3. Однородные уравнения 149
7.4. Уравнения вида ах + Ьу = с 150
7.5. Уравнения, приводимые к виду у = -rj-4 152
7.6. Деление с остатком 155
7.7. Использование оценок 157
7.8. Прочие задачи 160
Глава 8. Текстовые задачи 163
8.1. Простые задачи на составление уравнений 163
8.2. Задачи на многозначные целые числа 165
8.3. Задачи на проценты 167
8.4. Задачи на смеси и сплавы 174
8.5. Задачи на совместную работу 179
8.6. Задачи на движение 186
8.6.1. Движение по окружности 205
8.7. Задачи с целочисленными переменными 208
8.8. Прочие задачи 210
Глава 9. Задачи с параметрами 212
9.1. Прямой метод решения 212
9.2. Геометрический метод решения 221
9.3. Использование свойств инвариантности 225
9.4. Использование свойств квадратного трехчлена 226
Глава 10. Функции 232
10.1. Графики 232
10.2. Четность/нечетность 233
10.3. Монотонность 233
10.4. Область значений 234
10.5. Экстремумы функций одной переменной 236
10.6. Экстремумы функций нескольких переменных 239
10.6.1. Тригонометрические подстановки 241
10.7. Экстремумы функций целочисленных переменных 242
10.8. Текстовые задачи на экстремумы 243
Решения
Решения к главе 1 253
Решения к главе 2 263
Решения к главе 3 287
Решения к главе 4 304
Решения к главе 5 317
Решения к главе 6 322
Решения к главе 7 331
Решения к главе 8 338
Решения к главе 9 347
Решения к главе 10 356

Скачать бесплатно на сайте fileskachat.com

Предложения интернет-магазинов

Математика. 10-11 классы. Обратные тригонометрические функции

Автор(ы): Фалин Геннадий Иванович, Фалин Анатолий Иванович   Издательство: Экзамен, 2013 г.  Серия: Предпрофильная и профильная подготовка

Цена: 92 руб.   Купить

В книге подробно изложена теория обратных тригонометрических функций. На примере задач, предлагавшихся на вступительных испытаниях по математике в МГУ им. М.В. Ломоносова (как основных, так и предварительных) и различных олимпиадах, изложены основные методы решения задач на обратные тригонометрические функции. Для самостоятельного решения в брошюре собраны задачи вступительных экзаменов на различные факультеты МГУ. Задачи сгруппированы по типам, что позволяет составить представление о характере и сложности экзаменационных задач на обратные тригонометрические функции. Ко всем задачам даны ответы. Книга будет полезна абитуриентам при подготовке к вступительным экзаменам по математике в ВУЗы и выпускникам средних школ, претендующим на высокую оценку по ЕГЭ. Приказом № 729 Министерства образования и науки Российской Федерации учебные пособия издательства "Экзамен" допущены к использованию в общеобразовательных учреждениях. 2-е издание, стереотипное.


Сборник задач по элементарной математике для абитуриентов

Автор(ы): Иванов Константин Павлович   Издательство: BHV, 2004 г.

Цена: 131 руб.   Купить

Четвертое издание сборника (1-е изд. - 1996 г.; 2-е изд. - 1999 г.; 3-е изд. - 2001 г.) дополнено. Основу его составляют варианты задач по алгебре, а также по геометрии и тригонометрии, предлагавшиеся в разные годы на вступительных экзаменах по математике в Санкт-Петербургском университете и в других вузах. Задачник рассчитан на средний уровень подготовки читателя. Книга предназначена для учащихся и учителей математических школ, абитуриентов.


Алгебра. 7-11 классы. Определения, свойства, методики решения задач - в таблицах

Автор(ы): Нелин Евгений Петрович   Издательство: Илекса, 2015 г.  Серия: Математика

Цена: 218 руб.   Купить

Учебное пособие может быть использовано как учениками для повторения школьных курсов алгебры и начал анализа (например, при подготовке к ЕГЭ или ГИА), так и учителями на уроке при обобщении той или иной темы, независимо от того, по каким учебникам они работают. В пособии логически упорядочен и систематизирован минимум основных и дополнительных сведений из школьных курсов алгебры и начал анализа, который позволяет решать всевозможные задачи, предлагаемые на выпускных или вступительных экзаменах, а также в заданиях ЕГЭ и ГИА по математике. Для учащихся 7-11 классов общеобразовательных учебных заведений.


Сборник задач по математике для поступающих в вузы

Автор(ы): Норин Александр Владимирович, Старков Сергей Николаевич, Петрас Станислав Вацлавович, Родина Татьяна Васильевна, Рыжков Александр Евгеньевич, Тимофеева Галина Васильевна   Издательство: Питер, 2010 г.  Серия: Учебное пособие

Цена: 107 руб.   Купить

Сборник составлен в соответствии с программой вступительных экзаменов по математике технических вузов и соответствует уровню требований, предъявляемых к абитуриентам на письменных вступительных испытаниях. Материалы сборника могут быть использованы преподавателями курсов довузовской подготовки в технических вузах, учителями школ, а также абитуриентами для самостоятельной подготовки к вступительным экзаменам по математике.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!