x-uni.com
регистрация / вход
сейчас на линии 22 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 22 чел.
Высшая математика в примерах и задачах, 3 том, Черненко В.Д., 2003

Высшая математика в примерах и задачах, 3 том, Черненко В.Д., 2003

Высшая математика в примерах и задачах, 3 том, Черненко В.Д., 2003.

Предлагаемое учебное пособие содержит краткий теоретический материал по тензорному исчислению, численным методам высшего анализа и решения дифференциальных уравнений в частных производных, линейному и динамическому программированию, теории вероятностей и математической статистике, случайным функциям, теории массового обслуживания и теории оптимизации, а также большое количество примеров, иллюстрирующих основные методы решения.

ОГЛАВЛЕНИЕ.
Глава 21
ЭЛЕМЕНТЫ ТЕНЗОРНОГО ИСЧИСЛЕНИЯ
21.1. Некоторые сведения о векторах
21.2. Определение ортогонального тензора второго ранга
21.3. Операции над тензорами
21.4. Функции вектора
21.5. Фундаментальный тензор. Символы Кристоффеля
Глава 22
ЧИСЛЕННЫЕ МЕТОДЫ ВЫСШЕГО АНАЛИЗА
22.1. Действия с приближенными числами
22.2. Методы решения алгебраических и трансцендентных уравнений
22.3. Решение системы двух уравнений
22.4. Интерполирование функций
22.5. Численное дифференцирование функций
22.6. Вычисление определенных интегралов
22.7. Численное интегрирование обыкновенных дифференциальных уравнений
22.8. Метод коллокаций
Глава 23
ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ
23.1. Конечно-разностный метод (метод сеток)
23.2. Дифференциально-разностный метод (метод прямых)
23.3. Метод характеристик численного решения гиперболических систем квазилинейных уравнений
23.4. Метод конечных элементов
ГЛАВА 24
ЛИНЕЙНОЕ И ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ .
24.1. Решение системы линейных неравенств
24.2. Основная задача линейного программирования и геометрическая реализация ее в случае двух и трех переменных
24.3. Симплекс - метод
24.4. Табличный алгоритм отыскания оптимального решения
24.5. Транспортная задача
24.6. Задачи динамического программирования
Глава 25
ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. СЛУЧАЙНЫЕ СОБЫТИЯ
25.1. Основные понятия теории вероятностей
25.2. Алгебра событий
25.3. Теорема сложения вероятностей несовместных событий
25.4. Теорема умножения вероятностей
25.5. Следствия теорем сложения и умножения
25.6. Формула Бернулли. Биномиальное распределение вероятностей
25.7. Наивероятнейшее число появлений события
25.8. Локальная теорема Лапласа. Формула Пуассона
25.9. Интегральная теорема Лапласа
Глава 26
СЛУЧАЙНАЯ ВЕЛИЧИНА И ЕЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ
26.1. Дискретная случайная величина и ее распределение
26.2. Математическое ожидание и его свойства
26.3. Дисперсия и среднее квадратическое отклонение
26.4. Закон больших чисел
26.5. Начальные и центральные моменты
26.6. Простейший поток событий
26.7. Непрерывные случайные величины и их числовые характеристики
26.8. Функция распределения вероятностей случайных величин .
26.9. Функции случайных аргументов
26.10. Системы случайных величин
26.11. Условные законы распределения вероятностей составляющих системы
26.12. Числовые характеристики системы двух случайных величин
Глава 27
ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ
27.1. Основные понятия математической статистики
27.2. Средние значения признака совокупности
27.3. Дисперсия и среднеквадратическое отклонение
27.4. Мода и медиана
27.5. Доверительные интервалы для средних. Выборочный метод
27.6. Моменты, асимметрия и эксцесс
27.7. Условные варианты. Метод расчета сводных характеристик выборки
27.8. Элементы теории корреляции
Глава 28
СТАТИСТИЧЕСКАЯ ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ
28.1. Основные понятия
28.2. Сравнения двух дисперсий нормальных генеральных совокупностей
28.3. Сравнение двух средних генеральных совокупностей
28.4. Сравнение предполагаемой вероятности с наблюдаемой относительной частотой появления события
28.5. Сравнение нескольких дисперсий нормальных генеральных совокупностей
28.6. Проверка гипотезы о нормальном распределении генеральной совокупности
28.7. Проверка гипотез о других законах распределения генеральной совокупности
28.8. Проверка гипотезы о значимости выборочного коэффициента корреляции
28.9. Однофакторный дисперсионный анализ
28.10. Разыгрывание дискретной случайной величины. Метод Монте-Карло (статистических испытаний)
28.11. Разыгрывание непрерывной случайной величины
28.12. Оценка погрешности метода Монте-Карло
28.13. Вычисление определенных интегралов методом Монте-Карло
Глава 29
СЛУЧАЙНЫЕ ФУНКЦИИ
29.1. Случайные функции и их характеристики
29.2. Производная и интеграл случайной функции
29.3. Стационарные случайные функции и их характеристики
29.4. Корреляционная функция производной и интеграла стационарной случайной функции
Глава 30
ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ
30.1. Основные понятия системы массового обслуживания (СМО)
30.2. Определение цепи Маркова. Матрица перехода
30.3. Непрерывные марковские цепи .Уравнения Колмогорова для вероятностей состояния
30.4. Универсальные марковские цепи
28.4. Одноканальная и многоканальная СМО с отказами
28.5. Одноканальная СМО с ожиданием
30.4. Многоканальная СМО с ожиданием
30.5. СМО с ограниченным временем ожидания
30.6. Замкнутые системы СМО
30.7. СМО со "взаимопомощью" между каналами
Глава 31
ЭЛЕМЕНТЫ ТЕОРИИ ОПТИМИЗАЦИИ
31.1. Оптимизация планирования комплекса работ
31.2. Оптимизация размещения узлов почтовой связи
31.3. Расчет оптимального числа работников на предприятии
31.4. Задача нахождения кратчайшего пути
31.5. Алгоритмы определения максимального потока
31.6. Задача замены оборудования
31.7. Метод наименьших квадратов
31.8. Методы расчета надежности
ЛИТЕРАТУРА
ПРИЛОЖЕНИЕ

21.1. Некоторые сведения о векторах.
1°. Векторы называются линейно независимыми, если не допускают линейной функциональной связи между собой. В трехмерном пространстве можно построить три линейно независимых вектора. Любой четвертый вектор может быть разложен на компоненты по этим трем независимым векторам. Выбранное полное количество линейно независимых векторов данного пространства с целью определения постоянных направлений компонентов некоторого вектора этого пространства при его разложении на составляющие называется репером. Если разложение вектора представить через направляющие векторы репера, то числовые множители, определяющие относительные длины соответствующих компонентов, называются масштабным базисом.

2°. Взаимные системы координат. Рассмотрим косоугольную прямолинейную систему с некомпланарными масштабными векторами ё1,ё2,ё3, (рис. 21.1). Обозначим скалярные произведения этих векторов следующим образом
3°. Рассмотрим соотношения между двумя независимыми прямолинейными координатными системами. Индексы у второй системы координат отметим штрихами.

Скачать бесплатно на сайте fileskachat.com

Предложения интернет-магазинов

Бухгалтерский финансовый учет для студентов ВУЗов

Автор(ы): Черненко Алексей Федорович, Черненко Наталья Юрьевна   Издательство: Феникс, 2011 г.  Серия: Шпаргалки

Цена: 75 руб.   Купить

Изложение материала легко усваивается и быстро запоминается. Книга сэкономит вам время - подготовит к экзамену в предельно короткий срок и поможет получить высший балл. В ней ответы на все каверзные вопросы, поставленные самым строгим экзаменатором. Для студентов вузов.


Контрольные работы по курсу "Математика" и по курсу "Математика и информатика". 2 класс

Автор(ы): Козлова Светлана Александровна, Рубин Александр Григорьевич   Издательство: Баласс, 2013 г.  Серия: Образовательная система "Школа 2100"

Цена: 328 руб.   Купить

Тетрадь на печатной основе содержит контрольные работы для проведения текущего и итогового (в конце года) контроля результатов обучения во 2-м классе по курсу "Математика" или по курсу "Математика и информатика". Курс "Математика" изучается по учебнику "Математика" авторов Т.Е. Демидовой, С.А. Козловой, А.П. Тонких. Комплексный курс "Математика и информатика" изучается по учебникам "Математика" авторов Т.Е. Демидовой, С.А. Козловой, А.П. Тонких и "Информатика в играх и задачах" авторов А.В. Горячева, К.И. Гориной и Т.О. Волковой. Учебники "Математика" и "Информатика в играх и задачах" соответствуют Федеральному государственному образовательному стандарту начального общего образования и являются частью комплекта учебников развивающей Образовательной системы "Школа 2100". 2-е издание, исправленное.


Контрольные работы по курсу "Математика" и по курсу "Математика и информатика". 3 класс ФГОС

Автор(ы): Козлова Светлана Александровна, Рубин Александр Григорьевич   Издательство: Баласс, 2013 г.  Серия: Образовательная система "Школа 2100"

Цена: 336 руб.   Купить

Тетрадь на печатной основе содержит контрольные работы для проведения текущего и итогового (в конце года) контроля результатов обучения во 2-м классе по курсу "Математика" или по курсу "Математика и информатика". Курс "Математика" изучается по учебнику "Математика" авторов Т.Е. Демидовой, С.А. Козловой, А.П. Тонких. Комплексный курс "Математика и информатика" изучается по учебникам "Математика" авторов Т.Е. Демидовой, С.А. Козловой, А.П. Тонких и "Информатика в играх и задачах" авторов А.В. Горячева, К.И. Гориной и Н.И. Суворовой. Учебники "Математика" и "Информатика в играх и задачах" соответствуют Федеральному государственному образовательному стандарту начального общего образования и являются частью комплекта учебников развивающей Образовательной системы "Школа 2100". 2-е издание, дополненное и исправленное.


Самостоятельные и контрольные работы по курсам "Математика" и "Математика и информатика". 1 класс

Автор(ы): Козлова Светлана Александровна, Рубин Александр Григорьевич   Издательство: Баласс, 2013 г.  Серия: Образовательная система "Школа 2100"

Цена: 328 руб.   Купить

Тетрадь на печатной основе содержит самостоятельные и контрольные работы для проведения текущего и итогового (в конце года) контроля результатов обучения в 1-м классе по курсу "Математика" или по курсу "Математика и информатика". Курс "Математика" основан на материалах учебника "Математика" авторов Т.Е. Демидовой, С.А. Козловой, А.П. Тонких. Комплексный курс "Математика и информатика" основан на материалах учебника "Математика" авторов Т.Е. Демидовой, С.А. Козловой, А.П. Тонких и учебника "Информатика в играх и задачах" авторов А.В. Горячева, Т.О. Волковой. Учебники "Математика" и "Информатика в играх и задачах" соответствуют Федеральному государственному образовательному стандарту начального и общего образования и являются частью комплекта учебников развивающей Образовательной системы "Школа 2100". Издание 3, исправленное.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!