x-uni.com
регистрация / вход
сейчас на линии 71 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 71 чел.
Высшая математика в упражнениях и задачах, Часть 2, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 1986

Высшая математика в упражнениях и задачах, Часть 2, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 1986

Высшая математика в упражнениях и задачах, Часть 2, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 1986.

   Содержание II части охватывает следующие разделы программы: кратные и криволинейные интегралы, ряды, дифференциальные уравнения, теорию вероятностей, теорию функций комплексного переменного, операционное исчисление, методы вычислений, основы вариационного исчисления.
В каждом параграфе приводятся необходимые теоретические сведения. Типовые задачи даются с подробными решениями. Имеется большое количество задач для самостоятельной работы.

СТЕПЕННЫЕ РЯДЫ.
Функциональный ряд вида
a0 + a1 (х-а) + a2 (х-а)2 + ... + an (x-a)n + ...,
где а, а0, a1, ..., аn — действительные числа, называется степенным.

Основное свойство степенных рядов состоит в том, что если степенной ряд сходится при х=х0, то он сходится (и притом абсолютно) при всяком значении х, удовлетворяющем неравенству |х-а|<|x0-a| (теорема Абеля).

Одним из следствий теоремы Абеля является факт существования для всякого степенного ряда интервала сходимости |х-а| < R, или а — R < х < a + R с центром в точке а, внутри которого степенной ряд абсолютно сходится и вне которого он расходится. На концах интервала сходимости (в точках х = а ± R) различные степенные ряды ведут себя по-разному: одни сходятся абсолютно на обоих концах, другие — либо условно сходятся на обоих концах, либо на одном из них условно сходятся, на другом расходятся, третьи — расходятся на обоих концах.

Число R — половина длины интервала сходимости — называется радиусом сходимости степенного ряда. В частных случаях радиус сходимости ряда R может быть равен нулю или бесконечности. Если R = 0, то степенной ряд сходится лишь при х=а; если же R=, то ряд сходится на всей числовой оси.

ОГЛАВЛЕНИЕ
Глава I. Двойные и тройные интегралы
§ 1. Двойной интеграл в прямоугольных координатах б
§ 2. Замена переменных в двойном интеграле 10
§ 3. Вычисление площади плоской фигуры 14
§ 4. Вычисление объема тела 16
§ 5. Вычисление площади поверхности 17
§ 6. Физические приложения двойного интеграла 20
§ 7. Тройной интеграл 23
§ 8. Приложения тройного интеграла 28
§ 9. Интегралы, зависящие от параметра. Дифференцирование и интегрирование под знаком интеграла 30
§ 10. Гамма-функция. Бета-функция 35
Глава II. Криволинейные интегралы и интегралы по поверхности
§ 1. Криволинейные интегралы по длине дуги и по координатам 42
§ 2. Независимость криволинейного интеграла II рода от контура интегрирования. Нахождение функции по ее полному дифференциалу 47
§ 3. Формула Грина 50
§ 4. Вычисление площади 51
§ 5. Поверхностные интегралы 52
§ 6. Формулы Стокса и Остроградского — Гаусса. Элементы теории поля 56
Глава III. Ряды
§ 1. Числовые ряды 66
§ 2. Функциональные ряды 77
§ 3. Степенные ряды 81
§ 4. Разложение функций в степенные ряды 86
§ 5. Приближенные вычисления значений функций с помощью степенных рядов 91
§ 6. Применение степенных рядов к вычислению пределов и определенных интегралов 95
§ 7. Комплексные числа и ряды с комплексными числами 97
§ 8. Ряд Фурье 106
§ 9. Интеграл Фурье 113
Глава IV. Обыкновенные дифференциальные уравнения
§ 1. Дифференциальные уравнения первого порядка 117
§ 2. Дифференциальные уравнения высших порядков 139
§ 3. Линейные уравнения высших порядков 145
§ 4. Интегрирование дифференциальных уравнений с помощью рядов 161
§ 5. Системы дифференциальных уравнений 166
Глава V. Элементы теории вероятностей
§ 1. Случайное событие, его частота и вероятность. Геометрическая вероятность 176
§ 2. Теоремы сложения и умножения вероятностей. Условная вероятность 179
§ 3. Формула Бернулли. Наивероятнейшее число наступлений события 183
§ 4. Формула полной вероятности. Формула Бейеса 186
§ 5. Случайная величина и закон ее распределения 188
§ 6. Математическое ожидание и дисперсия случайной величины 192
§ 7. Мода и медиана 195
§ 8. Равномерное распределение 196
§ 9. Биномиальный закон распределения. Закон Пуассона 197
§ 10. Показательное (экспоненциальное) распределение. Функция надежности 200
§ 11. Нормальный закон распределения. Функция Лапласа 202
§ 12. Моменты, асимметрия и эксцесс случайной величины 206
§ 13. Закон больших чисел 210
§ 14. Теорема Муавра—Лапласа 213
§ 15. Системы случайных величин 214
§ 16. Линии регрессии. Корреляция 223
§ 17. Определение характеристик случайных величин на основе опытных данных 228
§ 18. Нахождение законов распределения случайных величин на основе опытных данных 240
Глава VI. Понятие об уравнениях в частных производных
§ 1. Дифференциальные уравнения первого порядка в частных производных 260
§ 2. Типы уравнений второго порядка в частных производных. Приведение к каноническому виду 262
§ 3. Уравнение колебания струны 265
§ 4. Уравнение теплопроводности 272
§ 5. Задача Дирихле для круга 278
Глава VII. Элементы теории функций комплексного переменного
§ 1. Функции комплексного переменного 282
§ 2. Производная функции комплексного переменного 285
§ 3. Понятие о конформном отображении 287
§ 4. Интеграл от функции комплексного переменного 291
§ 5. Ряды Тейлора и Лорана 295
§ 6. Вычисление вычетов функций. Применение вычетов к вычислению интегралов 300
Глава VIII. Элементы операционного исчисления
§ 1. Нахождение изображений функций 305
§ 2. Отыскание оригинала по изображению 307
§ 3. Свертка функций. Изображение производных и интеграла от оригинала 310
§ 4. Применение операционного исчисления к решению некоторых дифференциальных и интегральных уравнений 312
§ 5. Общая формула обращения 315
§ 6. Применение операционного исчисления к решению некоторых уравнений математической физики 316
Глава IX. Методы вычислений
§ 1. Приближенное решение уравнений 321
§ 2. Интерполирование 330
§ 3. Приближенное вычисление определенных интегралов 334
§ 4. Приближенное вычисление кратных интегралов 338
§ 5. Применение метода Монте-Карло к вычислению определенных и кратных интегралов 350
§ 6. Численное интегрирование дифференциальных уравнений 362
§ 7. Метод Пикара последовательных приближений 368
§ 8. Простейшие способы обработки опытных данных 370
Глава X. Основы вариационного исчисления
§ 1. Понятие о функционале 385
§ 2. Понятие о вариации функционала 386
§ 3. Понятие об экстремуме функционала. Частные случаи интегрируемости уравнения Эйлера 387
§ 4. Функционалы, зависящие от производных высших порядков 393
§ 5. Функционалы, зависящие от двух функций одной независимой переменной 394
§ 6. Функционалы, зависящие от функций двух независимых переменных 395
§ 7. Параметрическая форма вариационных задач 396
§ 8. Понятие о достаточных условиях экстремума функционала 397
Ответы 398
Приложение 409.

Скачать бесплатно на сайте fileskachat.com

Предложения интернет-магазинов

Контрольные работы по курсу "Математика" и по курсу "Математика и информатика". 2 класс

Автор(ы): Козлова Светлана Александровна, Рубин Александр Григорьевич   Издательство: Баласс, 2013 г.  Серия: Образовательная система "Школа 2100"

Цена: 328 руб.   Купить

Тетрадь на печатной основе содержит контрольные работы для проведения текущего и итогового (в конце года) контроля результатов обучения во 2-м классе по курсу "Математика" или по курсу "Математика и информатика". Курс "Математика" изучается по учебнику "Математика" авторов Т.Е. Демидовой, С.А. Козловой, А.П. Тонких. Комплексный курс "Математика и информатика" изучается по учебникам "Математика" авторов Т.Е. Демидовой, С.А. Козловой, А.П. Тонких и "Информатика в играх и задачах" авторов А.В. Горячева, К.И. Гориной и Т.О. Волковой. Учебники "Математика" и "Информатика в играх и задачах" соответствуют Федеральному государственному образовательному стандарту начального общего образования и являются частью комплекта учебников развивающей Образовательной системы "Школа 2100". 2-е издание, исправленное.


Контрольные работы по курсу "Математика" и по курсу "Математика и информатика". 3 класс ФГОС

Автор(ы): Козлова Светлана Александровна, Рубин Александр Григорьевич   Издательство: Баласс, 2013 г.  Серия: Образовательная система "Школа 2100"

Цена: 336 руб.   Купить

Тетрадь на печатной основе содержит контрольные работы для проведения текущего и итогового (в конце года) контроля результатов обучения во 2-м классе по курсу "Математика" или по курсу "Математика и информатика". Курс "Математика" изучается по учебнику "Математика" авторов Т.Е. Демидовой, С.А. Козловой, А.П. Тонких. Комплексный курс "Математика и информатика" изучается по учебникам "Математика" авторов Т.Е. Демидовой, С.А. Козловой, А.П. Тонких и "Информатика в играх и задачах" авторов А.В. Горячева, К.И. Гориной и Н.И. Суворовой. Учебники "Математика" и "Информатика в играх и задачах" соответствуют Федеральному государственному образовательному стандарту начального общего образования и являются частью комплекта учебников развивающей Образовательной системы "Школа 2100". 2-е издание, дополненное и исправленное.


Самостоятельные и контрольные работы по курсам "Математика" и "Математика и информатика". 1 класс

Автор(ы): Козлова Светлана Александровна, Рубин Александр Григорьевич   Издательство: Баласс, 2013 г.  Серия: Образовательная система "Школа 2100"

Цена: 328 руб.   Купить

Тетрадь на печатной основе содержит самостоятельные и контрольные работы для проведения текущего и итогового (в конце года) контроля результатов обучения в 1-м классе по курсу "Математика" или по курсу "Математика и информатика". Курс "Математика" основан на материалах учебника "Математика" авторов Т.Е. Демидовой, С.А. Козловой, А.П. Тонких. Комплексный курс "Математика и информатика" основан на материалах учебника "Математика" авторов Т.Е. Демидовой, С.А. Козловой, А.П. Тонких и учебника "Информатика в играх и задачах" авторов А.В. Горячева, Т.О. Волковой. Учебники "Математика" и "Информатика в играх и задачах" соответствуют Федеральному государственному образовательному стандарту начального и общего образования и являются частью комплекта учебников развивающей Образовательной системы "Школа 2100". Издание 3, исправленное.


Химия в тестах, задачах, упражнениях. 9 класс. К уч. О.С. Габриеляна. Вертикаль. ФГОС

Автор(ы): Габриелян Олег Сергеевич   Издательство: Дрофа, 2015 г.  Серия: Химия

Цена: 247 руб.   Купить

Предлагаемое пособие - часть учебного комплекса к учебнику О. С. Габриелям "Химия. 9 класс", но может использоваться также при изучении химии и по другим учебникам. Пособие содержит разнообразные задания (тесты, задания со свободно конструируемым ответом, расчётные задачи) двух уровней сложности, в том числе в формате ГИА и ЕГЭ. Рассмотрены подходы к решению заданий различных типов. В конце каждого раздела приведены проверочные работы по теме, состоящие из двух частей - обязательной и дополни­тельной (повышенной сложности). Ко всем заданиям даны ответы.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!