x-uni.com
регистрация / вход
сейчас на линии 50 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 50 чел.
Задачи Санкт - Петербургской олимпиады школьников по математике, Берлов С.Л., Иванов С.В., Кохась К.П., Карпов Д.В., Храбров А.И., Петров Ф.В., 2000

Задачи Санкт - Петербургской олимпиады школьников по математике, Берлов С.Л., Иванов С.В., Кохась К.П., Карпов Д.В., Храбров А.И., Петров Ф.В., 2000

Задачи Санкт - Петербургской олимпиады школьников по математике, Берлов С.Л., Иванов С.В., Кохась К.П.,  Карпов Д.В., Храбров А.И., Петров Ф.В., 2000.

На решение задач отводилось следующее время: первый тур - 3 часа, второй тур (во всех классах, кроме шестого) — 3 часа, плюс еще один час для участников, которые решили не менее трех задач из первых четырех задач варианта (в 11 классе - две задачи из первых четырех). В шестом классе — соответственно 2.5 и 3.5 часа. На решение задач отборочного тура было дано 5 часов.

СОДЕРЖАНИЕ
Победители олимпиады 2000 года.
Условия задач
Первый тур
Второй тур
Отборочный тур .
Открытая олимпиада ФМЛ №239
Сведения о вторых вариантах .
Решения задач.
Обращение классических неравенств
Статистические данные олимпиады 2000 года

Примеры.
1. На доске написано три двузначных числа, одно из которых начинается на 5, второе - на 6, а третье - на 7. Учитель попросил трех учеников, чтобы каждый из них выбрал какие-нибудь два из этих чисел и сложил их. У первого ученика получилось 147, ответы второго и третьего – различные трехзначные числа, начинающиеся на 12. Как такое могло быть? (Р.. Семизаров)

2. В марте 1532 года скупой рыцарь каждый день спускался в свой подвал и добавлял в (почти уже полный) сундук от 1 до 10 монет. После этого он каждый раз подсчитывал монеты и оказывалось, что число монет в сундуке делится без остатка либо на 22, либо на 25 (но не на оба этих числа, сразу). Докажите, что рыцарь потерял счет своим сокровищам.
(К. Кохась)

3. В группе из 50 ребят некоторые знают все буквы, кроме "р", которую просто пропускают при письме, а остальные - знают все
буквы, кроме "к", которую тоже пропускают. Однажды учитель попросил 10 учеников написать слово "кот", 18 других учеников - написать слово "рот", а остальных 22 учеников - слово "крот". При этом слова "кот" и "рот" оказались написанными по 15 раз. Сколько ребят написали свое слово верно? (Р. Семизаров)

4. Квадрат 100 х 100 сантиметров разбит на 9 прямоугольников двумя вертикальными и двумя горизонтальными линиями. Внутренний прямоугольник имеет размеры 45 х 30 сантиметров, а стороны остальных прямоугольников не обязательно выражаются целым числом сантиметров. Найдите сумму площадей четырех угловых прямоугольников. Не забудьте обосновать ответ.
(С. Иванов, Р. Семизаров)

5. Учительница дала отличнице Кате четыре положительных числа. Катя написала на доске числа 3, 4 и 7 и сказала, что каждое из них является суммой каких-то трех из четырех данных ей чисел. Докажите, что Катя ошиблась. (Д. Карпов)

6. Перед боем с белогвардейцами у Василия Ивановича и Петьки было поровну патронов. Василий Иванович израсходовал в бою в 8 раз меньше патронов, чем Петька, а осталось у него в 9 раз больше патронов, чем у Петьки. Докажите, что изначально количество патронов у Василия Ивановича делилось на 71.
(Д. Карпов, Ю. Лифшиц)

7. Одно и то же натуральное число поделили с остатком на 3, на 18 и на 48. Сумма трех полученных остатков, оказалось, равна 39. Докажите, что остаток, полученный при делении на 3, равен 1.
(К. Кохась)

Скачать бесплатно на сайте fileskachat.com

Предложения интернет-магазинов

Задачи Санкт-Петербургской олимпиады школьников по математике 2008 года

  Издательство: BHV, 2008 г.

Цена: 129 руб.   Купить

Читатель найдет в ней задачи Санкт-Петербургской олимпиады школьников по математике 2008 года, а также открытой олимпиады ФМЛ №239, которая, не будучи туром Санкт-Петербургской олимпиады, по характеру задач, составу участников и месту проведения является прекрасным дополнением к ней. Все задачи приведены с подробными решениями, условия и решения геометрических задач сопровождаются рисунками. В качестве дополнительного материала читатель найдет подборку экстремальных комбинаторных задач и эссе об увеличении периметров фигур с помощью оригами. Книга предназначена для школьников, учителей, преподавателей математических кружков и просто любителей математики. Составители: Берлов С.Л., Кохась К.П., Храбров А.И.


Задачи Санкт-Петербургской олимпиады школьников по математике 2010 года

  Издательство: BHV, 2011 г.

Цена: 199 руб.   Купить

Книга предназначена для школьников, учителей, преподавателей математических кружков и просто любителей математики. Читатель найдет в ней задачи Санкт-Петербургской олимпиады школьников по математике 2010 года, а также открытой олимпиады ФМЛ 239, которая, не будучи туром Санкт-Петербургской олимпиады, по характеру задач, составу участников и месту проведения является прекрасным дополнением к ней. Все задачи приведены с подробными решениями, условия и решения геометрических задач сопровождаются рисунками. В качестве дополнительного материала читатель найдет задачу с XXI Летней конференции Турнира городов, две статьи о многочленах и драматическую историю одного очень популярного неравенства. Составители: Берлов С. Л., Храбров А. И., Кохась К. П. и др.


Задачи Санкт-Петербургской олимпиады школьников по математике 2007 года

  Издательство: BHV, 2007 г.

Цена: 103 руб.   Купить

Книга предназначена для школьников, учителей, преподавателей математических кружков и просто любителей математики. Читатель найдет в ней задачи Санкт-Петербургской олимпиады школьников по математике 2007 года, а также открытой олимпиады ФМЛ № 239, которая, не будучи туром Санкт-Петербургской олимпиады, по характеру задач, составу участников и месту проведения является прекрасным дополнением к ней. Все задачи приведены с подробными решениями, условия и решения геометрических задач сопровождаются рисунками. В качестве дополнительного материала читатель найдет исследовательскую задачу, предлагавшуюся на XVIII Летней конференции Турнира городов, статью о применении линейной алгебры в комбинаторных задачах и заметку об исследовании олимпиадного культа. Составители: Ф.В. Петров, К.П. Кохась, С.Л. Берлов.


Петербургские олимпиады школьников по математике. 2003-2005

  Издательство: BHV, 2007 г.

Цена: 294 руб.   Купить

Книга предназначена для школьников, учителей, преподавателей математических кружков и просто любителей математики. Читатель найдет в ней задачи Санкт-Петербургских олимпиад школьников по математике 2003-2005 гг., а также открытой олимпиады ФМЛ № 239, которая, не будучи туром Санкт-Петербургской олимпиады, по характеру задач, составу участников и месту проведения является прекрасным дополнением к ней. Все задачи приведены с подробными решениями, условия и решения геометрических задач сопровождаются рисунками. В книгу включены также подборки задач XIV-XV Летних конференций турнира городов (2003, 2004 гг.) и несколько статей на околоолимпиадные темы - от развернутых решений отдельных задач до теоретических опусов. В одном из них впервые на русском языке изложена "комбинаторная теорема о нулях", которая находит все большее применение в числовых и комбинаторных задачах. Составители: С.В. Иванов, К.П. Кохась, А.И. Храбров.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!