x-uni.com
регистрация / вход
сейчас на линии 186 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 186 чел.
Сборник задач по математике для ВУЗов - Часть 4 - Ефимова А.В. Поспелова А.С.

Сборник задач по математике для ВУЗов - Часть 4 - Ефимова А.В. Поспелова А.С.

Название: Сборник задач по математике для ВУЗов - Часть 4.

Автор: Ефимова А.В., Поспелова А.С.

2003.

    Содержит задачи по специальным курсам математики: теории вероятностей и математической статистике. Во всех разделах приводятся необходимые теоретические сведения. Все задачи снабжены ответами, а наиболее сложные - решениями.

ОГЛАВЛЕНИЕ
Предисловие титульных редакторов. 5
Глава 18. Теория вероятностей. 7
§ 1. Случайные события. 7
1. Понятие случайного события. 2. Алгебраические операции над событиями. 3. Аксиоматическое определение вероятности события. 4. Классическая вероятностная схема - схема урн. 5. Комбинаторный метод вычисления вероятностей в классической схеме, б. Геометрические вероятности. 7. Условные вероятности. Независимость событий. 8. Вероятности сложных событий. 9. Формула полной вероятности. 10. Формула Байеса
§ 2. Случайные величины. 56
1. Законы распределения и числовые характеристики случайных величин. 2. Распределения, связанные с повторными независимыми испытаниями. 3. Распределение Пуассона. 4. Нормальный закон распределения
§ 3. Случайные векторы. 85
1. Законы распределения и числовые характеристики случайных векторов. 2. Нормальный закон на плоскости
§ 4. Функции случайных величин. 106
1. Числовые характеристики функций случайных величин. 2. Характеристические функции случайных величин. 3. Законы распределения функций случайной величины. 4. Задача композиции
§ 5. Закон больших чисел и предельные теоремы теории вероятностей. 130
1. Закон больших чисел. 2. Предельные теоремы теории вероятностей. 3. Метод статистических испытаний
§ 6. Случайные функции (корреляционная теория). 143
1. Законы распределения и осредненные характеристики случайных функций. 2. Дифференцирование и интегрирование случайных функций. 3. Стационарные случайные функции. 4. Спектральное разложение стационарных случайных функций. 5. Преобразование стационарных случайных функций линейными динамическими системами с постоянными коэффициентами.

Глава 19. Математическая статистика.
185
§ 1. Методы статистического описания результатов наблюдений. 185
1. Выборка и способы ее представления. 2. Числовые характеристики выборочного распределения. 3. Статистическое описание и выборочные характеристики двумерного случайного вектора.
§ 2. Статистическое оценивание характеристик распределения генеральной совокупности по выборке. 218
1. Точечные оценки и их свойства. Метод подстановки. 2. Метод максимального правдоподобия. 3. Метод моментов. 4. Распределения х2) Стьюдента и Фишера.
§ 3. Интервальные оценки. 237
1. Доверительные интервалы и доверительная вероятность. Доверительные интервалы для параметров нормально распределенной генеральной совокупности. 2. Доверительные интервалы для вероятности успеха в схеме Бернулли и параметра А распределения Пуассона. 3. Доверительные интервалы для коэффициента корреляции р
§ 4. Проверка статистических гипотез. 247
1. Основные понятия. Проверка гипотез о параметрах нормально распределенной генеральной совокупности. 2. Проверка гипотез о параметре р биномиального распределения. 3. Проверка гипотез о коэффициенте корреляции р. 4. Определение наилучшей критической области для проверки простых гипотез.
§ 5. Одно факторный дисперсионный анализ. 279
§ 6. Критерий х2 и его применение. 286
1. Проверка гипотезы о виде распределения генеральной совокупности. 2. Проверка гипотезы о независимости двух случайных величин. 3. Проверка гипотезы о равенстве параметров двух биномиальных распределений
§ 7. Элементы регрессионного анализа и метод наименьших квадратов. 298
1. Линейная регрессия. 2. Линейная регрессионная модель общего вида (криволинейная регрессия). 3. Использование ортогональных систем функций. 4. Некоторые нелинейные задачи, сводящиеся к линейным моделям. 5. Множественная линейная регрессия (случай двух независимых переменных), б Вычисление и статистический анализ оценок параметров линейной модели при коррелированных и неравноточных наблюдениях.
§ 8. Непараметрические методы математической статистики. 339
1. Основные понятия. Критерий знаков. 2. Критерий Вилкоксона, Манна и Уитни. 3. Критерий для проверки гипотезы Но о равенстве дисперсий двух генеральных совокупностей. 4. Критерий серий 5. Ранговая корреляция
Ответы и указания. 358
Приложения. 411
Список литературы.

5. Комбинаторный метод вычисления вероятностей в классической схеме. Решение вероятностных задач на классическую схему часто облегчается использованием комбинаторных формул. Каждая из комбинаторных формул определяет общее число элементарных исходов в некотором опыте, состоящем в выборе наудачу т элементов из п различных элементов исходного множества Е - {ех, в2, ..., еп}. При этом в постановке каждого такого опыта строго оговорено, каким способом производится выбор и что понимается под различными выборками.

Существуют две принципиально различные схемы выбора. В первой схеме выбор осуществляется без возвращения элементов (это значит, что отбираются либо сразу все m элементов, либо последовательно по одному Элементу, причем каждый отобранный элемент исключается из исходного множества). Во второй схеме выбор осуществляется поэлементно с обязательным возвращением отобранного элемента на каждом шаге и тщательным перемешиванием исходного множества перед следующим выбором. После того как выбор тем или иным способом осуществлен, отобранные элементы (или их номера) могут быть либо упорядочены (т.е. выложены в последовательную цепочку), либо нет. В результате получаются следующие четыре различные постановки эксперимента по выбору наудачу т элементов из общего числа п различных элементов множества Е.

Скачать бесплатно на сайте fileskachat.com
Скачать бесплатно на сайте depositfiles.com

Предложения интернет-магазинов

Сборник задач по математике для поступающих в вузы

Автор(ы): Сканави Марк Иванович, Зайцев Владимир Валентинович, Егерев Виктор Константинович   Издательство: АСТ, 2013 г.  Серия: Учебник, проверенный временем

Цена: 423 руб.   Купить

Сборник составлен в соответствии с программой по математике для поступающих в вузы. Он состоит из двух частей: «Арифметика, алгебра, геометрия» (часть I); «Алгебра, геометрия (дополнительные задачи). Начала анализа. Координаты и векторы» (часть II). Все задачи части I разбиты на три группы по уровню сложности. В каждой главе приведены сведения справочного характера и примеры решения задач. Ко всем задачам даны ответы. Пособие адресовано учащимся старших классов, абитуриентам и учителям математики. 6-е издание.


Сборник задач по математике для поступающих в высшие технические учебные заведения

Автор(ы): Сканави Марк Иванович   Издательство: АСТ, 2013 г.  Серия: Учебник, проверенный временем

Цена: 220 руб.   Купить

Сборник составлен в соответствии с программой по математике для поступающих во втузы. Он состоит из двух частей: "Арифметика, алгебра, геометрия" (часть 1); "Алгебра, геометрия (дополнительные задачи). Начала анализа. Координаты и векторы" (часть 2). Все задачи части I разбиты на три группы по уровню сложности. В каждой главе приведены сведения справочного характера и примеры решения задач. Ко всем задачам даны ответы. Пособие адресовано учащимся старших классов, абитуриентам и учителям математики. 6-е издание.


Сборник задач по математике для поступающих в вузы

Автор(ы): Сканави Марк Иванович, Егерев Виктор Константинович, Кордемский Борис Анастасьевич   Издательство: Мир и образование, 2015 г.

Цена: 345 руб.   Купить

Сборник составлен в соответствии с программой по математике для поступающих во втузы. Он состоит из двух частей: "Арифметика, алгебра, геометрия" (часть I); "Алгебра, геометрия (дополнительные задачи). Начала анализа. Координаты и векторы" (часть II). Все задачи части I разбиты на три группы по уровню сложности. В каждой главе приведены сведения справочного характера и примеры решения задач. Ко всем задачам даны ответы. Пособие адресовано учащимся старших классов, абитуриентам и учителям математики. 6-е издание.


Сборник текстовых задач. Тексты, методика, мониторинг. 1-4 классы

Автор(ы): Керова Галина Васильевна   Издательство: Вако, 2010 г.  Серия: Мастерская учителя

Цена: 111 руб.   Купить

Пособие содержит все необходимое для обучения младших школьников решению задач. В первой части рассмотрены виды работы над задачами, приведена классификация задач, подробно разобраны методы их решения и приемы обучения детей. Вторая часть содержит текстовые задачи, которые систематизированы по классам и сгруппированы по темам в соответствии с базовой учебной программой по математике. Каждый раздел включает рекомендации по работе с представленным материалом. Издание адресовано учителям начальных классов, методистам, студентам педагогических вузов и колледжей.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!