x-uni.com
регистрация / вход
сейчас на линии 110 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 110 чел.
Дифференциальные уравнения, Демидович Б.П., Моденов В.П., 2008

Дифференциальные уравнения, Демидович Б.П., Моденов В.П., 2008

Дифференциальные уравнения, Демидович Б.П, Моденов В.П., 2008.

  Предлагаемая читателям книга состоит из двух частей: в первой части рассматриваются основы теории обыкновенных дифференциальных уравнений, во второй — дифференциальные уравнения с частными производными.
Учебное пособие предназначено для студентов технических вузов. Написанная ясным и простым языком, книга представляется полезной также лицам, занимающимся математикой самостоятельно.

СОСТАВЛЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ.
Метод дифференциальных уравнений, основы которого были заложены Ньютоном и Лейбницем, представляет собой один из наиболее плодотворных методов изучения действительного мира. Математики XVII—XVIII веков, периода создания высшей математики, не без основания считали, что «язык природы — есть язык дифференциальных уравнений». Действительно, дифференциальные уравнения являются математическим аппаратом, позволяющим устанавливать законы протекания физических процессов на основании изучения скоростей изменения величин, характеризующих эти процессы. Исходными предпосылками при этом являются физические законы, получаемые в результате непосредственного изучения материальной действительности.

В XVII—XVIII веках при помощи дифференциальных уравнений были сформулированы и решены многочисленные задачи механики, физики, химии и т. п., недоступные прежним математическим средствам. В частности, Ньютон решил знаменитую задачу о движении «двух тел» — солнца и планеты. В дальнейшем особое развитие получили дифференциальные уравнения в частных производных, к которым приводят многочисленные задачи по теории тепла, электричества, магнетизма, газовой динамики и других разделов естествознания.

Оглавление
Часть I ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
Глава I. Общие понятия
§1. Задачи, приводящие к дифференциальным уравнениям
§2. Основные определения
Глава II. Дифференциальные уравнения первого порядка
§1. Различные формы дифференциального уравнения первого порядка
§2. Поле направлений
§3. Полигоны Эйлера
§4. Теорема существования и единственности
§5. Уравнения с разделяющимися переменными
§6. Однородные уравнения
§7. Линейные уравнения
§8. Уравнение Бернулли
§9. Уравнения в полных дифференциалах
§10. Понятие об интегрирующем множителе
§11. Интегрирующий множитель линейного уравнения
§12. Уравнение первого порядка, не разрешенные относительно производной
§13. Параметрический способ решения
§14. Уравнение Лагранжа
§15. Уравнение Клеро
§16. Особые точки
§17. Особые решения
§18. Составление дифференциальных уравнений
§19. Задачи геометрического характера
§20. Задачи физического характера
Глава III. Дифференциальные уравнения второго порядка
§1. Общие понятия
§2. Механический смысл дифференциального уравнения второго порядка
§3. Интегрируемые случаи
§4. Случай понижения порядка
§5. Линейные однородные уравнения с постоянными коэффициентами
§6. Физическая интерпретация линейного однородного уравнения второго порядка
§7. Линейные неоднородные уравнения с постоянными коэффициентами
§8. Физическая интерпретация линейного неоднородного уравнения второго порядка
§9. Нахождение частных решений неоднородного уравнения методом неопределенных коэффициентов
§10. О краевых задачах для уравнений второго порядка
Глава IV. Дифференциальные уравнения высших порядков
§1. Теорема существования и единственности решений
§2. Уравнения, допускающие понижение порядка
§3. Однородные линейные дифференциальные уравнения
§4. Неоднородные линейные дифференциальные уравнения
§5. Метод вариации произвольных постоянных
§6. Однородные линейные уравнения с постоянными коэффициентами
§7. Неоднородные линейные уравнения с постоянными коэффициентами
§8. Уравнение Эйлера
§9. Системы дифференциальных уравнений
§10. Об общих краевых задачах
Часть II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ
Глава I. Уравнения первого порядка
§1. Линейные однородные уравнения
§2. Задача Коши для линейного однородного уравнения
§3. Квазилинейные уравнения
Глава II. Ряды Фурье
§1. Ортогональные системы функций и обобщенные ряды Фурье
§2. Тригонометрические ряды Фурье
Глава III. Классификация уравнений второго порядка
§1. Основные определения
§2. Приведение к каноническому виду линейных относительно старших производных уравнений второго порядка с двумя независимыми переменными
§3. Задачи с начальными данными
Глава IV. Основные уравнения математической физики
§1. Уравнение колебаний струны
§2. Уравнение теплопроводности
§3. Уравнение Лапласа
Ответы к заданиям части I
Ответы к заданиям части II
Литература.

Скачать бесплатно на сайте fileskachat.com
Скачать бесплатно на сайте yadi.sk

Предложения интернет-магазинов

Задачи с параметрами. Иррациональные уравнения

Автор(ы): Локоть Владимир Владимирович   Издательство: АРКТИ, 2010 г.  Серия: Абитуриент: Готовимся к ЕГЭ

Цена: 175 руб.   Купить

В пособии приведены решения около 100 задач с параметрами (иррациональные уравнения и неравенства, системы, задачи с модулем). Пособие адресовано учителям, студентам, учащимся старших классов. Материал может быть использован при подготовке к единому государственному экзамену.


Математика. Решаем уравнения

Автор(ы): Знаменская Лариса   Издательство: Стрекоза, 2013 г.  Серия: Рабочая тетрадь младшего школьника

Цена: 26 руб.   Купить

Рабочая тетрадь младшего школьника. Математика. Решаем уравнения Для совместных занятий детей и родителей.


Квадратные уравнения и неравенства. Справочные материалы

  Издательство: Айрис-Пресс, 2015 г.  Серия: Справочные материалы. Математика

Цена: 17 руб.   Купить

Справочный материал по математике предназначен для индивидуальной работы учащихся в классе и дома. Пособие содержит систематизированную учебную информацию представленную в краткой табличной форме по темам: квадратные уравнения и неравенства, таблица квадратов целых чисел (от 0 до 99). Пособие позволяет быстро находить необходимые сведения по теме, обобщить знания, способствует более прочному запоминанию учебного материала.


Решаем примеры и уравнения. 1 класс

Автор(ы): Коротяева Елизавета Валентиновна   Издательство: Феникс, 2015 г.  Серия: Внеклассный практикум

Цена: 101 руб.   Купить

Пособие "Решаем примеры и уравнения. 1 класс" предназначено для самостоятельной работы учащихся. Каждый раздел четко структурирован: он содержит правила, образцы выполненных заданий различных типов, предусмотренных программой по математике для начальной школы, и упражнения для отработки практических навыков. В книге размещены ключи ко всем заданиям. Издание предназначено для учеников младших классов, их родителей и учителей. 2-е издание.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!