x-uni.com
регистрация / вход
сейчас на линии 49 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 49 чел.
Алгебра и теория пределов. Элективный курс. Епихин В.Е. 2006

Алгебра и теория пределов. Элективный курс. Епихин В.Е. 2006

Название: Алгебра и теория пределов. Элективный курс.

Автор: Епихин В. Е.
2006

   Элективный курс предназначен для углубленного изучения математики. Излагаются основы теории множеств и математической логики, элементы аксиоматики действительных чисел, начала тригонометрии, теория приближений действительных чисел, комплексные числа, теория пределов, свойства функций, многочлены. Книга завершается доказательством основной теоремы алгебры. Изложение сопровождается примерами и упражнениями. В основу учебного пособия положен общий курс математики, который читается учащимся старших классов физико-математического лицея № 1580 при МГТУ им. Н. Э. Баумана.
Для старшеклассников и учителей математики общеобразовательных школ, лицеев, гимназий, колледжей. Книга будет полезна преподавателям и слушателям подготовительных курсов, а также студентам младших курсов ВУЗов.

1. Математика возникла в глубокой древности из практических потребностей счета и простейших измерений- Как любой пласт культуры, математика была вызвана к жизни духовными потребностями человека, его стремлением к познанию и красоте.
Хотя числа и не управляют миром, они показывают, по каким законам управляется мир. На вопрос: «Для чего изучают математику?» английский философ Роджер Бэкон ответил: «Тот, кто не знает математики, не может узнать никакой другой науки и даже не может обнаружить своего невежества».
2. Эта книга не столько отражает многолетний опыт работы автора на кафедре «Основы математики и информатики» Специализированного учебно-научного центра при МГТУ им. Н. Э. Баумана, сколько представляет собой изложение понимания задач школьного математического образования с целью разработки ясного, компактного курса, позволяющего вести преподавание математики с единых позиций старшеклассникам с подготовкой разного уровня.
Понимание необходимости объективно складывающегося в перспективе сближения математики, изучаемой в старшей школе, и математики высшей школы позволит планомерно преодолеть известный разрыв между требованиями школьной программы и требованиями университетских программ по высшей математике.
Базисные понятия: число, множество, соответствие, отношение, функция, последовательность, предел, непрерывность, производная, интеграл, уравнение, а также приемы доказательств и методы решения типовых задач, являются общими как для школьной, так и для ВУЗовской математики.

Оглавление
ПРЕДИСЛОВИЕ
ВВЕДЕНИЕ В ТЕОРИЮ МНОЖЕСТВ
I. Аксиоматика натурального ряда чисел
II. Отношение порядка в натуральном ряде чисел
III. Основные понятия и формулы теории множеств
IV. Основные понятия и теоремы арифметики
IV.1. Делимость целых чисел
IV.2. Признаки делимости натуральных чисел на 2, 3, 4, 5, 8, 9, 10, 25
IV.3. Деление с остатком
V. Декартово произведение множеств
VI. Соответствие, или бинарное отношение между двумя множествами
VII. Виды соответствий; Функциональное соответствие
VIII. Суперпозиция отображений
IX. Примеры числовых отображений
X. Арифметическая прогрессия
XI. Геометрическая прогрессия
XII. О математическом доказательстве
ХII.1. Основные понятия логики
XII.2. Виды математических теорем
ХII.З. Схемы доказательства методом «от противного»
Коллоквиум по теме:
ВВЕДЕНИЕ В ТЕОРИЮ МНОЖЕСТВ
ЧАСТЬ 1
ЧИСЛОВЫЕ СИСТЕМЫ. ТЕОРИЯ ПРЕДЕЛОВ
ГЛАВА 1
ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА

1.1. Множество рациональных чисел
1.2. Сечение на множестве рациональных чисел. Множество действительных чисел
1.3. Леммы о рациональных приближениях действительных чисел
1.4. Теория десятичных дробей
1.5. Непрерывность множества действительных чисел
1.6. Границы числовых множеств
1.7. Арифметические действия с действительными числами
1.8. Типизация числовых систем
1.9. Сравнение числовых множеств
1.10. Обобщение понятия угла. Числовая окружность
ГЛАВА 2
СТЕПЕНЬ ДЕЙСТВИТЕЛЬНОГО ЧИСЛА

2.1. Свойства степени числа с целым показателем
2.2. Существование и единственность арифметического корня
2.3. Свойства арифметического корня
2.4. Свойства степени числа с рациональным показателем
2.5. Неравенство Бернулли
2.6. Степень числа с действительным показателем
2.7. Свойства степени числа с действительным показателем
2.8. Логарифм числа
2.9. Свойства логарифмов
2.10. Доказательство классических неравенств
ГЛАВА 3
НАЧАЛА ТРИГОНОМЕТРИИ

3.1. Синус, косинус, тангенс и котангенс числа
3.2. Формулы приведения к острому углу
3.3. Условные тригонометрические неравенства
3.4. Вывод основных тригонометрических формул
Дополнение. Аппроксимация действительных чисел
Д1. Приближение иррациональных чисел рациональными
Д2. Приближенные вычисления на числовой окружности
ГЛАВА 4
КОМПЛЕКСНЫЕ ЧИСЛА (РАСШИРЕНИЕ МНОЖЕСТВА ДЕЙСТВИТЕЛЬНЫХ ЧИСЕЛ)

4.1. Изображение комплексных чисел на координатной плоскости
4.2. Формула Муавра
4.3. Извлечение квадратного корня из комплексных чисел
4.4. Извлечение корней из комплексных чисел
4.5. Стереографическая проекция на комплексную плоскость 4.6. Уравнение прямой и окружности в комплексной плоскости
4.7. Преобразование инверсии
4.8. Конформные отображения комплексной плоскости
ГЛАВА 5
ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ

5.1. Определение предела последовательности
5.2. Теоремы о пределах последовательностей
5.3. Арифметические теоремы о пределах последовательностей
5.4. Признаки сходимости последовательностей
5.5. Применение теорем о пределах
5.5.1. Основание натуральных логарифмов
5.5.2. Пределы некоторых последовательностей
5.5.3. Вычисление корня из числа
5.5.4. Применение комплексных чисел при вычислении пределов
5.6. Принцип вложенных отрезков. Метод Больцано
5.7. Теорема Больцано—Вейерштрасса
5.8. Фундаментальные последовательности
5.9. Типизация множеств точек на числовой прямой и на координатной плоскости
5.10. Типизация множеств точек на комплексной плоскости
5.11. Теорема Больцано- Вейерштрасса на комплексной плоскости
Коллоквиум по теме:
ЧИСЛОВЫЕ СИСТЕМЫ. ТЕОРИЯ ПРЕДЕЛОВ
ЧАСТЬ 2 СВОЙСТВА ФУНКЦИЙ
ГЛАВА 6
ОБЩИЕ СВОЙСТВА ФУНКЦИЙ

6.1. Основные определения
6.2. Линейные преобразования графиков функций
6.3. Свойство периодичности функции
6.4. Четные и нечетные функции.
Построение графиков функций и соответствий
6.5. Максимум и минимум функции
6.6. Наибольшее и наименьшее значения функции
6.7. Монотонные функции
6.8. Асимптоты графика функции
6.9. Свойство обратимости функции
6.10. Свойства взаимно обратных функций
6.11. Классификация элементарных функций
6.12. Функции, заданные неявно
6.12.1. Преобразование графиков соответствий
ГЛАВА 7
ПРЕДЕЛ ФУНКЦИИ

7.1. Определение предела функции по Коши
7.2. Замечательные пределы
7.3. Бесконечно малые функции различных порядков
7.4. Вывод формул Эйлера на множестве комплексных чисел
7.5. Вывод формулы Виета
7.6. Предел монотонной функции
7.7. Определение предела функции по Гейне
ГЛАВА 8
СВОЙСТВО НЕПРЕРЫВНОСТИ ФУНКЦИИ

8.1. Теоремы о непрерывных функциях
8.2. Признак непрерывности функции
8.3. Теоремы о промежуточных значениях функции
8.4. Теоремы о наименьшем и наибольшем значениях непрерывной функции
ГЛАВА 9
СВОЙСТВО ВЫПУКЛОСТИ ФУНКЦИИ

9.1. Основные определения
9.2. Признаки выпуклости функции
9.3. Неравенство Йенсена
Коллоквиум по теме:
СВОЙСТВА ФУНКЦИЙ
ЧАСТЬ 3 МНОГОЧЛЕНЫ. ОСНОВНАЯ ТЕОРЕМА АЛГЕБРЫ
ГЛАВА 10
ОБЩИЕ СВОЙСТВА МНОГОЧЛЕНОВ

10.1. Действия с многочленами
10.2. Теорема Безу. Схема Горнера
10.3. Алгоритм Евклида отыскания наибольшего общего делителя многочленов
10.4. Свойства и график целой рациональной функции
ГЛАВА 11
ТЕОРЕМЫ О КОРНЯХ МНОГОЧЛЕНА

11.1. Теорема Виета
11.2- Корни многочлена с целыми коэффициентами
11.3. Различные приемы исследования корней многочлена
11.4. Возвратные уравнения
11.4.1. Симметрические уравнения
11.4.2. Кососимметрические уравнения
ГЛАВА 12
ОСНОВНАЯ ТЕОРЕМА АЛГЕБРЫ

12.1. Комплексные функции комплексной переменной
12.2. Неограниченность модуля многочлена
12.3. Непрерывность модуля многочлена
12.4. Доказательства основной теоремы алгебры
12.4.1. Доказательство К. Ф. Гаусса
12.4.2. Доказательство А. Н. Колмогорова
12.4.3. Аналитическое доказательство Ж. Р. Аргана
ГЛАВА 13
ПРИМЕНЕНИЕ ОСНОВНОЙ ТЕОРЕМЫ АЛГЕБРЫ

13.1. Следствия из основной теоремы алгебры
13.2. Решение неполных кубических уравнений с действительными коэффициентами
13.2.1. Случай трех действительных корней
13.2.2. Случай одного действительного и пары комплексно сопряженных корней
13.3. Локализация корней многочлена
13.4. Установление верхней границы положительных корней многочлена
13.5. Теорема Декарта о действительных корнях многочлена
Коллоквиум по теме:
МНОГОЧЛЕНЫ. ОСНОВНАЯ ТЕОРЕМА АЛГЕБРЫ
СПИСОК ЛИТЕРАТУРЫ
ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

Скачать бесплатно на сайте fileskachat.com

Предложения интернет-магазинов

Физика. Электродинамика. 7-9 классы. Элективный курс

Автор(ы): Выговский Леонид Аполлонович, Меденцев Анатолий Андреевич   Издательство: Просвещение, 2014 г.  Серия: Элективный курс

Цена: 862 руб.   Купить

Пособие представляет собой элективный курс, разработанный для организации факультативного изучения или обобщающего повторения по теме "Электричество и магнетизм". Представлен широкий спектр учебно-познавательных возможностей, в том числе увлекательные эксперименты, исследовательские задания, домашние практические работы, игры и кроссворды, самостоятельные работы, что помогает ученикам лучше усвоить теоретический материал, раскрывающий электромагнитную природу сил трения и упругости, атомных и межмолекулярных сил, теплового расширения и многих биологических явлений. Материал книги может также использоваться как дополнение к учебникам при работе с учащимися общеобразовательных школ. 2-е издание.


Методы решения олимпиадных задач. 10-11 классы

Автор(ы): Фарков Александр Викторович   Издательство: Илекса, 2014 г.  Серия: Математика: элективный курс

Цена: 109 руб.   Купить

Предлагаемое пособие предназначено в качестве элективного курса по математике для учащихся 10-11-х классов, интересующихся олимпиадными задачами и принимающих участие в различных математических соревнованиях. Данный элективный курс может быть предложен учащимся, изучающим математику как на профильном, так и на базовом уровне. Отдельные темы можно рассматривать и в 9-м классе. Также данное пособие будет полезно учителям математики, преподавателям вузов.


Измерения физических величин. Элективный курс. Методическое пособие

Автор(ы): Кабардина Светлана Ильинична, Шефер Никодим Иванович   Издательство: Бином. Лаборатория знаний, 2005 г.  Серия: Элективный курс

Цена: 77 руб.   Купить

Методическое пособие является частью учебно-методического комплекта элективного курса по физике, рассчитанного на учащихся 10-11 классов. В пособии обсуждаются принципиальные теоретические вопросы, непосредственно связанные с материалом учебного курса. Основное внимание уделяется методическим рекомендациям по выполнению наиболее сложных практических работ и решению задач, предлагаемых учащимся. Предназначено для учителей физики общеобразовательных школ.


Алгебра в таблицах. 7-11 классы. Справочное пособие

Автор(ы): Звавич Леонид Исаакович, Рязановский Андрей Рафаилович   Издательство: Дрофа, 2015 г.  Серия: Алгебра

Цена: 191 руб.   Купить

Пособие содержит таблицы по всем наиболее важным разделам школьного курса арифметики, алгебры, начал анализа. В таблицах кратко изложена теория по каждой теме, приведены основные формулы, графики и примеры решения типовых задач. В конце книги помещен предметный указатель. Пособие будет полезно учащимся 7-11 классов, абитуриентам, студентам, учителям и родителям. 19-е издание, стереотипное.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!