x-uni.com
регистрация / вход
сейчас на линии 31 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 31 чел.
Высшая геометрия, Клейн Ф., 2004

Высшая геометрия, Клейн Ф., 2004

Высшая геометрия, Клейн Ф., 2004.

   Книга выдающегося немецкого математика Ф.Клейна (1849--1925) создана на основе лекций по высшей геометрии, прочитанных им в Гёттингенском университете и подготовленных к печати его учениками и последователями. Автор разделяет геометрию на две отдельные части: геометрия в ограниченной части пространства, к которой относятся почти все применения дифференциальных и интегральных исчислений, и геометрия в полном пространстве, к которой относится теория алгебраических образов. Обе части подробно рассмотрены в книге, параграфы которой расположены таким образом, чтобы читатель, знакомясь с важнейшими понятиями геометрии, видел, как они развивались с течением времени и какие успехи вследствие этого делала данная область науки.
Предназначена для специалистов - математиков и физиков, использующих в своих исследованиях применения геометрии, а также для студентов и аспирантов.

Основное разделение геометрии.
В соответствии с изложенным мы можем также и геометрию расчленить на две отдельные части, именно:
1. Геометрия в ограниченном куске пространства, соответственно с применением только элементов функций.
2. Геометрия в полном пространстве, соответственно с применением полных функций.

К первой части относятся почти все применения дифференциального и интегрального исчислений к геометрии. Действительно, если мы производим построение касательных к кривой, если мы исследуем кривизну кривых или поверхностей, то при этом мы всегда принимаем во внимание только малый ограниченный кусок области, не заботясь о том, какие особенности может иметь наш образ вне рассматриваемой области. Сюда также относится в своей большей части разработанная Гауссом теория поверхностей.

С другой стороны, теория алгебраических кривых и поверхностей относится по преимуществу ко второй части, так как при большинстве исследований по поводу этих образов, например, при нахождении точек пересечения или линий пересечения нескольких таких образов мы всегда рассматриваем эти образы в целом.

Оглавление
Предисловие
Введение
§1. Общие предварительные замечания
§1,1. Основные теоретико-функциональные понятия
§1,2. Основное разделение геометрии
§1,3. Дальнейшие относящиеся сюда сведения
Первая часть
ОБЩЕЕ ПОНЯТИЕ КООРДИНАТ
Точечные координаты
§2. Линейные координаты
§3. Работы Плюкера
§4. Общие криволинейные координаты
§5. Эллиптические координаты
§6. Геодезические линии на поверхностях второй степени
§7. Построения из нитей Гревса и Штауде
§8. Теория кругов и шаров. Исторические замечания
§9. Элементарная геометрия круга
§10. Преобразования посредством обратных радиусов (инверсия)
§11. Пентасферические координаты
§12. Применения пентасферических координат
§13. Циклиды Дюпена
§14. Классификация рассмотренных до сих пор объектов аналитической геометрии
§15. Билинейные уравнения и двойственность
§16. Нуль-система
§17. Применения нуль-системы
§18. Геометрическое истолкование дифференциальных уравнений
Замена пространственных элементов
§19. Общий принцип Плюкера
§20. Прямолинейные координаты
§21. Линейные многообразия линейчатой геометрии
§22. Линейный комплекс, как пространственный элемент
§23. Привлечение вспомогательных средств из теории квадратичных форм
§24. Сравнение с пентасферическими координатами
§25. Геометрия сфер Ли
§26. Соотношение между асимптотическими линиями и линиями кривизны
§27. Исторические замечания о геометрии сфер
§28. Привлечение многомерного пространства Грассманом и Кели
§29. Круги в пространстве, пентацикл Стефаноса
§30. Коннексы Клебша
§31. Основные формулы для кривизны поверхности
§32. Введение плоскостных координат в дифференциальные уравнения
ТЕОРИЯ ПРЕОБРАЗОВАНИЙ.
Точечные преобразования пространства
§33. Линейные преобразования
§34. Перспектограф и пантограф
§35. Рельефная перспектива и перспектива изображения
§36. Ньютонова классификация кривых третьего порядка
§37. Понселе и учение о двойных отношениях
§38. Штейнер и Шаль
§39. Кели и Штаудт
§40. О теории инвариантов
§41. W-кривые Клейна и Ли
§42. Проективная дифференциальная геометрия
§43. Теория конфокальных конических сечений в мнимой области
§44. Мнимые коллинеации
§45. Стереографическая проекция
§46. Изотропные кривые и конформные отображения поверхностей
§47. Теория минимальных поверхностей Ли
§48. Новейшие рассмотрения стереографической проекции и тетрациклических координат
§49. Группа сродства кругов Мебиуса
§50. Теорема Лиувилля о конформных отображениях пространства
§51. Принцип перенесения Гесса
§52. Плоские конфигурации
§53. Взаимные планы сил графической статики
§54. Общие аналитические точечные преобразования
§55. Классификация выражений Пфаффа
§56. Проблема Пфаффа
§57. Введение квадратичных дифференциальных форм Гауссом
§58. Дифференциаторы Бельтрами
§59. Пространство Римана
§60. Дальнейшая литература о квадратичных дифференциальных формах
§61. Кремоновы преобразования
Замена пространственных элементов
§62. Двойственное преобразование, как преобразование прикосновения
§63. Первое введение общих преобразований прикосновения
§64. Обе группы преобразований геометрии сфер
§65. Изотропная проекция на Rn+1 на Rn
§66. Изотропная проекция R3 на R2
§67. Группа Лагерра и эквилонгальные отображения на плоскости
§68. Перенесение на высшие размерности
§69. Группа геометрии прямых линий Плюкера
§70. Связь между геометрией прямых линий Плюкера и геометрией сфер Ли
§71. Элементарно-геометрическое рассмотрение прямолинейно-сферического преобразования
§72. Теория характеристик дифференциальных уравнений с частными производными первого порядка
§73. Дифференциальные уравнения с частными производными геометрии линий и геометрии сфер
§74. Общая теория преобразований прикосновения
§75. Дальнейшие примеры преобразований прикосновения
§75,1. Подэры
§75,2. Зубчатые колеса
§75,3. Преобразования прикосновения, сохраняющие периметр
§75,4. Вариации постоянных
§76. Теория инвариантов преобразований прикосновения
Третья часть. ПРИМЕРЫ ГЕОМЕТРИЧЕСКИХ ИССЛЕДОВАНИЙ ИЗ ПОСЛЕДНИХ ДЕСЯТИЛЕТИЙ. ДОПОЛНЕНИЯ.
Геометрия линий Штуди
§77. Принцип перенесения Штуди
§78. Аналоги дуальным проективитетам на плоскости в геометрии линий
§79. Аналоги дуальному сродству окружностей в геометрии линий.
Литература
§80. Евклидово отображение эллиптической неевклидовой пространственной геометрии
§81. Кинематическое отображение
Радоновы механические соображения о параллелизме Леви-Чивита
§82. Уравнения движения
§83. Асимптотическая интеграция
§84. Параллельное перенесение
§85. Применение параллельного перенесения в теории поверхностей
§86. Выведение параллельного перенесения из внутренней геометрии поверхности
Из топологии: артиновы косы
§87. Доказательство Александера теоремы Титце
§88. Проблема узлов
§89. Группа кос
§90. Определяющие соотношения
§91. Замкнутая коса
§92. Свободное произведение групп
§93. Косы третьего порядка
О дифференциальных уравнениях Монжа. Их отношение к теории дифференциальных уравнений с частными производными первого порядка и к вариационному исчислению
§94. Уравнение Гамильтона
§95. Соответствующие преобразования прикосновения
Введение в теорию элементарных делителей
§96. Линейные подстановки и исчисление матриц
§97. Геометрическое истолкование линейных подстановок
§98. Нормальная форма линейных преобразований
§99. Пары квадратичных форм
Именной и предметный указатель.

Скачать бесплатно на сайте fileskachat.com

Предложения интернет-магазинов

Начальная школа. Отличная геометрия

Автор(ы): Лонг Линетт   Издательство: Попурри, 2014 г.

Цена: 248 руб.   Купить

Книга поможет детям младшего школьного возраста, их родителям и даже преподавателям понять и поверить, что геометрия - очень интересная, полезная и совсем не трудная наука!


Геометрия. 7 класс. Домашняя работа к учебнику Л.С. Атанасяна и др. "Геометрия. 7-9 классы"

Автор(ы): Прокопович Александр Николаевич   Издательство: Экзамен, 2015 г.  Серия: Решебник

Цена: 43 руб.   Купить

Предлагаемое учебное пособие содержит образцы выполнения всех задач и упражнений из учебника "Геометрия. 7-9 классы: учеб. для общеобразоват. учреждений / [Л.С. Атанасян, В.Ф. Бутузов, СБ. Кадомцев и др.]. - М. : Просвещение, 2013". Пособие адресовано родителям, которые смогут проконтролировать правильность решения, а в случае необходимости помочь детям в выполнении домашней работы по геометрии. 21-е издание, исправленное и переработанное.


Геометрия. 10 класс. Методические рекомендации

Автор(ы): Бутузов Валентин Федорович, Прасолов Виктор Васильевич   Издательство: Просвещение, 2014 г.  Серия: Математика и информатика

Цена: 303 руб.   Купить

Методические рекомендации ориентированы на учебник В. Ф. Бутузова, В. В. Прасолова "Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10-11 классы" под редакцией В. А. Садовничего (базовый и углублённый уровни). Книга содержит комментарии к теоретическому материалу и задачам, решения наиболее сложных и важных задач, основные требования к учащимся, а также разные варианты тематического планирования для базового и углублённого уровней.


Геометрия. 10 класс. Дидактические материалы. Базовый и углубленный уровни

Автор(ы): Бутузов Валентин Федорович, Прасолов Виктор Васильевич   Издательство: Просвещение, 2015 г.  Серия: Математика и информатика

Цена: 221 руб.   Купить

Дидактические материалы ориентированы на учебник В. Ф. Бутузова, В. В. Прасолова "Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10-11 классы" под редакцией В. А. Садовничего. В них представлены самостоятельные и контрольные работы в четырёх вариантах разного уровня сложности, а также математические диктанты и дополнительные задачи к главам учебника. Ко всем заданиям даны ответы, а ко многим - указания.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!