x-uni.com
регистрация / вход
сейчас на линии 244 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 244 чел.
Дифференциальная геометрия и топология, Дополнительные главы, Фоменко А.Т., 1999

Дифференциальная геометрия и топология, Дополнительные главы, Фоменко А.Т., 1999

Дифференциальная геометрия и топология, Дополнительные главы, Фоменко А.Т., 1999.

  Книга написана на основе курсов по дифференциальной геометрии, топологии и смежным вопросам, читаемых на механико-математическом факультете МГУ. Книга содержит материал, ставший фактически учебным и в то же время широко использующийся в современной научной литературе. Основное внимание уделено элементам гомотопической топологии, теории критических точек гладких функций на многообразиях, описанию наиболее важных типов гладких многообразий, часто использующихся в приложениях, изучению геометрии и топологии групп Ли, а также изложению элементов теории интегрирования гамильтоновых систем на симплектических многообразиях.

Клеточные комплексы и их простейшие свойства.
Первые определения
Многие задачи механики, теоретической физики приводят к необходимости изучать свойства гладких многообразий; эти объекты часто появляются уже на первых стадиях анализа той или иной конкретной прикладной задачи. Наряду с многообразиями довольно часто уже на первых этапах исследования возникают объекты иного рода — так называемые клеточные комплексы, организованные локально не столь жестко, как гладкие многообразия (поэтому не обладающие многими их свойствами), но являющиеся иногда более гибким аппаратом, позволяющим обнаружить те или иные инварианты изучаемой задачи.

Простейшим примером являются поверхности уровня гладкой функции, заданной на многообразии, например, поверхности уровня потенциальной функции или полной энергии. Эти поверхности возникают в физике как «уровни», по которым движутся траектории механических систем с постоянной энергией (с важными примерами мы познакомимся ниже), однако эти «уровни» могут иметь особые точки, т. е. не являются многообразиями. Тем не менее они являются клеточными комплексами, которые тем самым дают некоторое естественное расширение класса многообразий (как мы увидим, любое многообразие является клеточным комплексом).

Содержание
Предисловие  
Глава 1. Клеточные комплексы, гомологии  
§1. Клеточные комплексы и их простейшие свойства
1. Первые определения (8). 2. Примеры клеточных комплексов (9).
§2. Группы сингулярных гомологий
1. Сингулярные симплексы, граничный оператор, группы гомологий (12). 2. Ценные комплексы, ценная гомотопия, гомотопическая инвариантность групп гомологий (15).
Глава 2. Критические точки гладких функций на многообразиях  
§3. Критические точки и геометрия поверхностей уровня
1. Определение критических точек (19). 2. Каноническое представление функции в окрестности невырожденной критической точки (21). 3. Топологическая структура поверхностей уровня функции в окрестности критических точек (24). 4. Представление многообразия в виде клеточного комплекса, связанное с функцией Морса (27). 5. Операция приклейки ручек и разложение компактного многообразия в сумму ручек (29).
§4. Точки бифуркации и их связь с гомологиями
1. Определение точек бифуркации (33). 2. Теорема, связывающая полиномы Пуанкаре функции и многообразия (36). 3. Некоторые следствия (38). 4. Критические точки функций на двумерных многообразиях (42).
§5. Критические точки функций и категория многообразия
1. Определение категории (48). 2. Топологические свойства категории (49). 3. Формулировка теоремы о нижней границе числа точек бифуркации (52). 4. Доказательство теоремы (54). 5. Примеры вычисления категории (57).
§6. Правильные функции Морса и бордизмы
1. Бордизмы (62). 2. Разложение бордизма в композицию элементарных бордизмов (63). 3. Градиентно-подобные поля и сепарат-рисные диски (66). 4. Перестройки поверхностей уровня гладкой функции (67). 5. Построение правильных функций Морса (70). 6. Двойственность Пуанкаре (77).
Глава 3. Топология трехмерных многообразий
§7. Каноническое представление трехмерных многообразий
1. Правильные функции Морса и диаграммы Хегора (83). 2. Примеры диаграмм Хегора (85). 3. Кодирование трехмерных многообразий при помощи сетей (88). 4. Сети и сепаратрисные диаграммы (92).
§8. Задача распознавания трехмерной сферы
1. Гомологические сферы (94). 2. Гомотопические сферы (100).
§9. Об алгоритмической классификации многообразий
1. Фундаментальные группы трехмерных многообразий (103).
2. Фундаментальные группы четырехмерных многообразий (104).
3. О невозможности классификации гладких многообразий в размерностях. больших, чем три (106).
Глава 4. Симметрические пространства  
§10. Основные свойства симметрических пространств, их модели и группы изометрии  
1. Определение симметрических пространств (110). 2. Группы Ли как симметрические пространства (ПО). 3. Свойства тензора кривизны (112). 4. Инволютивные автоморфизмы и связанные с ними симметрические пространства (113). 5. Картановская модель симметрического пространства (115). 6. Геометрия карта-новских моделей (118). 7. Некоторые важные примеры симметрических пространств (121).
§11. Геометрия групп Ли
1. Полупростые группы и алгебры Ли (Г26). 2. Картановские подалгебры (128). 3. Корни полупростой алгебры Ли и ее корневое разложение (130). 4. Некоторые свойства системы корней (133). 5. Системы корней простых алгебр Ли (139).
§12. Компактные группы
1. Вещественные формы (143). 2. Компактная форма (145).
§13. Орбиты присоединенного представления
1. Орбиты общего положения и сингулярные орбиты (153). 2. Орбиты в группах Ли (157). 3. Доказательство теоремы сопряженности максимальных торов в компактной группе Ли (159).
4. Группа Вейля и ее связь с орбитами (168).
Глава 5. Симплектическая геометрия
§14. Симплектические многообразия
1. Симплектическая структура и ее каноническое представление. Кососимметрический градиент (172). 2. Гамильтоновы векторные поля (176). 3. Скобка Пуассона и интегралы гамильтоновых полей (178). 4. Теорема Лиувилля (коммутативное интегрирование гамильтоновых систем) (182).
§15. Некоммутативное интегрирование гамильтоновых систем 1. Некоммутативные алгебры Ли интегралов (188). 2. Теорема о некоммутативном интегрировании (190). 3. Редукция гамильтоновых систем с некоммутативными симметриями (193). 4. Орбиты (ко)присосдинснного представления как симплектические многообразия. (202).
Глава 6. Геометрия и механика
§16. Вложение гамильтоновых систем в алгебры Ли  
1. Постановка задачи и полные коммутативные наборы функций (204). 2. Уравнения движения многомерного твердого тела с закрепленной точкой и их аналоги на полупростых алгебрах Ли. Комплексная полупростая серия (208). 3. Гамильтоновы системы компактной и нормальной серий (213). 4. Секционные операторы и соответствующие им динамические системы на орбитах (217).
5. Уравнения движения многомерного твердого тела но инерции в идеальной жидкости (221).
§17. Полная интегрируемость некоторых гамильтоновых систем на алгебрах Ли
1. Метод сдвига аргумента и построение коммутативных алгебр интегралов на орбитах в алгебрах Ли (228). 2. Примеры для алгебр Ли SO3 и SO4. (234). 3. Случаи полной интегрируемости уравнений движения многомерного твердого тела с закрепленной точкой в отсутствие силы тяжести и полная интегрируемость их аналогов на полупростых алгебрах Ли (238). 4. Случаи полной интегрируемости уравнений движения многомерного твердого тела по инерции в идеальной жидкости (242). 5. Конечномерные аппроксимации уравнений магнитной гидродинамики и случаи их полной интегрируемости (245).
Литература.

Скачать бесплатно на сайте fileskachat.com
Скачать бесплатно на сайте yadi.sk

Предложения интернет-магазинов

Геометрия. 10 класс. Дидактические материалы. Базовый и углубленный уровни

Автор(ы): Бутузов Валентин Федорович, Прасолов Виктор Васильевич   Издательство: Просвещение, 2015 г.  Серия: Математика и информатика

Цена: 221 руб.   Купить

Дидактические материалы ориентированы на учебник В. Ф. Бутузова, В. В. Прасолова "Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10-11 классы" под редакцией В. А. Садовничего. В них представлены самостоятельные и контрольные работы в четырёх вариантах разного уровня сложности, а также математические диктанты и дополнительные задачи к главам учебника. Ко всем заданиям даны ответы, а ко многим - указания.


Математика. Арифметика. Геометрия. 5 класс. Тетрадь-тренажер

Автор(ы): Бунимович Евгений Абрамович, Кузнецова Людмила Викторовна, Минаева Светлана Станиславовна, Суворова Светлана Борисовна, Рослова Лариса Олеговна   Издательство: Просвещение, 2015 г.  Серия: Сферы

Цена: 243 руб.   Купить

Тетрадь-тренажёр является составной частью учебно-методического комплекса "Математика. Арифметика. Геометрия" для 5 класса линии УМК "Сферы". Издание подготовлено в соответствии с Федеральным государственным образовательным стандартом основного общего образования. Главной особенностью тетради является распределение заданий по видам деятельности внутри каждой главы, что позволяет учителю эффективно формировать требуемые умения и навыки, а также развивать познавательную деятельность учащихся. 5-е издание.


Геометрия. 7-9 класс. Методическое пособие к учебнику И.Ф. Шарыгина. Вертикаль. ФГОС

Автор(ы): Мищенко Татьяна Михайловна   Издательство: Дрофа, 2014 г.  Серия: Геометрия

Цена: 247 руб.   Купить

Методическое пособие совместно с учебником, рабочей программой, рабочими тетрадями к каждому классу и электронным приложением к учебнику (на сайте издательства) составляет учебно-методический комплекс. Пособие содержит примерное тематическое планирование, требования к предметным результатам обучения, методические рекомендации к изучению материала, указания по решению задач учебника, дополнительные задачи и вопросы, самостоятельные и контрольные работы, что позволит существенно сократить время учителя на подготовку к уроку. Учебник И. Ф. Шарыгина "Геометрия. 7-9 классы" соответствует Федеральному государственному образовательному стандарту основного общего образования, одобрен РАО и РАН, имеет гриф "Рекомендовано" и включен в Федеральный перечень учебников. 2-е издание, стереотипное.


Геометрия. 7 класс. Рабочая тетрадь №1. ФГОС

Автор(ы): Мерзляк Аркадий Григорьевич, Полонский Виталий Борисович, Якир Михаил Семенович   Издательство: Вентана-Граф, 2014 г.  Серия: Математика (Алгоритм успеха)

Цена: 181 руб.   Купить

Рабочая тетрадь содержит различные виды заданий на усвоение и закрепление нового материала, задания развивающего характера, дополнительные задания, которые позволяют проводить дифференцированное обучение. Тетрадь в комплекте с учебником "Геометрия. 7 класс" (авт. А.Г Мерзляк, В.Б. Полонский, М.С. Якир) входит в систему "Алгоритм успеха". Соответствует федеральному государственному образовательному стандарту основного общего образования (2010 г.).

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!