x-uni.com
регистрация / вход
сейчас на линии 48 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 48 чел.
Краткий курс аналитической геометрии, Ефимов Н.В.

Краткий курс аналитической геометрии, Ефимов Н.В.

Краткий курс аналитической геометрии, Ефимов Н.В., 1967.

  Предметом изучения аналитической геометрии являются фигуры, которые в декартовых координатах задаются уравнениями первой степени или второй. На плоскости - это прямые и линии второго порядка. В пространстве - плоскости и прямые, поверхности второго порядка. Этот материал изложен в книге в минимальном объеме, необходимом для усвоения дальнейших глав высшей математики и ее приложений.
Для студентов высших учебных заведений.

Ось и отрезки оси.
1. Рассмотрим произвольную прямую. Она имеет два взаимно противоположных направления. Изберем по своему желанию одно из них и назовем его положительным (а противоположное направление — отрицательным).
Прямую, на которой «назначено» положительное направление, мы будем называть осью. На чертежах положительное направление оси указывается стрелкой (см., например, рис. 1, где изображена ось a).

2. Пусть дана какая-нибудь ось и, кроме того, указан масштабный отрезок, т. е. линейная единица, с помощью которой любой отрезок может быть измерен и тем самым для любого отрезка может быть определена его длина.

Возьмем на данной оси две произвольные точки и пометим их буквами А, В. Отрезок, ограниченный точками А, В, называется направленным, если сказано, какая из этих точек считается началом отрезка, какая концом. Направлением отрезка считается направление от начала к концу.

ОГЛАВЛЕНИЕ
ЧАСТЬ ПЕРВАЯ
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ
Глава 1. Координаты на прямой и на плоскости 9
§ 1. Ось и отрезки оси 9
§ 2. Координаты на прямой. Числовая ось 12
§ 3. Декартовы прямоугольные координаты на плоскости. Понятие о декартовых косоугольных координатах 15
§ 4. Полярные координаты 19
Глава 2. Простейшие задачи аналитической геометрии на плоскости 23
§ 5. Проекция отрезка. Расстояние между двумя точками 23
§ 6. Вычисление площади треугольника 29
§ 7. Деление отрезка в Данном отношении 31
§ 8. Преобразование декартовых координат при параллельном сдвиге осей 36
§ 9. Преобразование декартовых прямоугольных координат при повороте осей 37
§ 10. Преобразование декартовых прямоугольных координат при изменении начала и повороте осей 39
Глава 3. Уравнение линии 43
§ 11. Понятие уравнения линии. Примеры задания линий 43
§ 12. Примеры вывода уравнений заранее данных линий 51
§ 13. Задача о пересечении двух линий 54
§ 14. Параметрические уравнения линии 55
§ 15. Алгебраические линии 57
Глава 4. Линии первого порядка 59
§ 16. Угловой коэффициент 59
§ 17. Уравнение прямой с угловым коэффициентом 61
§ 18. Вычисление угла между двумя прямыми. Условия параллельности и перпендикулярности двух прямых 63
§ 19. Прямая как линия первого порядка. Общее уравнение прямой 67
§ 20. Неполное уравнение первой степени. Уравнение прямой «в отрезках» 68
§ 21. Совместное исследование уравнений двух прямых 71
§ 22. Нормальное уравнение прямой. 74
Задача вычисления расстояния от точки до прямой
§ 23. Уравнение пучка прямых 78
Глава 5. Геометрические свойства линий второго порядка 82
§ 24. Эллипс. Определение эллипса и вывод его канонического уравнения 82
§ 25. Исследование формы эллипса 86
§ 26. Эксцентриситет эллипса 89
§ 27. Рациональные выражения фокальных радиусов эллипса 90
§ 28. Построение эллипса по точкам. Параметрические уравнения эллипса 91
§ 29. Эллипс как проекция окружности на плоскость. Эллипс как сечение круглого цилиндра 92
§ 30. Гипербола. Определение гиперболы и вывод ее канонического уравнения95
§ 31. Исследование формы гиперболы 100
§ 32. Эксцентриситет гиперболы 107
§ 33. Рациональные выражения фокальных радиусов гиперболы 108
§ 34. Директрисы эллипса и гиперболы 109
§ 35. Парабола. Вывод канонического уравнения параболы 113
§ 36. Исследование формы параболы 116
§ 37. Полярное уравнение эллипса, гиперболы и параболы 119
§ 38. Диаметры линий второго порядка 120
§ 39. Оптические, свойства эллипса, гиперболы и параболы 126
§ 40. Эллипс, гипербола и парабола как конические сечения 128
Глава 6. Преобразование уравнений при изменении координат 129
§ 41. Примеры приведения общего уравнения линии второго порядка к каноническому виду 129
§ 42. Гипербола как график обратной пропорциональности. Парабола как график квадратного трехчлена 139
ЧАСТЬ ВТОРАЯ
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ
Глава 7. Некоторые простейшие задачи аналитической геометрии в пространстве 143
§ 43. Декартовы прямоугольные координаты в пространстве 143
§ 44. Понятие свободного вектора Проекции вектора на ось 147
§ 45. Проекции вектора на оси координат 151
§ 46. Направляющие косинусы 154
§ 47. Расстояние между двумя точками. Деление отрезка в данном отношении 155
Глава 8. Линейные операции над векторами 157
§ 48. Определение линейных операций 157
§ 49. Основные свойства линейных операций 158
§ 50. Разность векторов 162
§ 51. Основные теоремы о проекциях 164
§ 52. Разложение векторов на компоненты 167
Глава 9. Скалярное произведение векторов 172
§ 53. Скалярное произведение и его основные свойства 172
§ 54. Выражение скалярного произведения через координаты перемножаемых векторов 176
Глава 10. Векторное и смешанное произведение векторов 179
§ 55. Векторное произведение и его основные свойства 179
§ 56. Выражение векторного произведения через координаты перемножаемых векторов 187
§ 57. Смешанное произведение трех векторов 190
§ 58. Выражение смешанного произведения через координаты перемножаемых векторов 194
Глава 11. Уравнение поверхности и уравнения линии 196
§ 59. Уравнение поверхности 196
§ 60. Уравнения линии. Задача о пересечении трех поверхностей 198
§ 61. Уравнение цилиндрической поверхности с образующими, параллельными одной из координатных осей 199
§ 62. Алгебраические поверхности 202
Глава 12. Плоскость как поверхность первого порядка. Уравнения прямой 204
§ 63. Плоскость как поверхность первого порядка 204
§ 64. Неполные уравнения плоскостей. Уравнение плоскости «в отрезках» 207
§ 65. Нормальное уравнение плоскости. Расстояние от точки до плоскости 210
§ 66. Уравнения прямой 214
§ 67. Направляющий вектор прямой. Канонические уравнения прямой. Параметрические уравнения прямой 218
§ 68. Некоторые дополнительные предложения и примеры 223
Глава 13. Поверхности второго порядка 229
§ 69. Эллипсоид и гиперболоиды 229
§ 70. Конус второго порядка 235
§ 71. Параболоиды 237
§ 72. Цилиндры второго порядка 241
§ 73. Прямолинейные образующие однополостного гиперболоида. Конструкции В.Г. Шухова 243
Приложение. Элементы теории определителей 247
§ 1. Определители второго порядка и системы двух уравнений первой степени с двумя неизвестными 247
§ 2. Однородная система двух уравнений первой степени с тремя неизвестными 252
§ 3. Определители третьего порядка 255
§ 4. Алгебраические дополнения и миноры 259
§ 5. Решение и исследование системы трех уравнений первой степени с тремя неизвестными 263
§ 6. Понятие определителя любого порядка 271.

Скачать бесплатно на сайте fileskachat.com

Предложения интернет-магазинов

Все правила геометрии в начальной школе

Автор(ы): Беленькая Татьяна Борисовна   Издательство: Феникс, 2014 г.  Серия: Наша началочка

Цена: 170 руб.   Купить

Перед вами - сборник правил по геометрии для начальной школы. В первые школьные годы ребенок получает важные знания по базовым предметам - основы, которые определяют дальнейшее успешное обучение. Доступное изложение, наглядность, опора на жизненный опыт ребёнка - все эти принципы мы соблюдали, составляя краткий курс по геометрии в начальных классах. Мы охватили основные понятия, которые должен усвоить школьник, и надеемся, что эта книга будет вам полезна!


Математика: справочник для студентов ВУЗов, техникумов, колледжей

Автор(ы): Абанина Татьяна Ивановна   Издательство: Феникс, 2014 г.  Серия: Справочники

Цена: 279 руб.   Купить

Справочник содержит теоретические сведения, рекомендации для решения задач и образцы решений типовых примеров по важнейшим темам высшей математики: линейной алгебре, аналитической геометрии, дифференциальному исчислению функций одной и нескольких переменных и другим. Для студентов высших учебных заведений, техникумов и колледжей различных специальностей.


Геометрия. Весь школьный курс в таблицах

  Издательство: Букмастер, 2015 г.  Серия: Весь школьный курс в таблицах

Цена: 354 руб.   Купить

Данное пособие составлено в виде таблиц, систематизирующих и обобщающих теоретические сведения по школьному курсу геометрии. В книге в доступной форме изложены все разделы геометрии, изучаемые в средней школе. Пособие рекомендуется использовать для коллективной работы в школе и для индивидуальных занятий дома. Составитель: Т.С. Степанова. 3-е издание.


Памятка по алгебре и геометрии

Автор(ы): Белых Светлана Владимировна   Издательство: Феникс, 2015 г.  Серия: Большая перемена

Цена: 61 руб.   Купить

Книга содержит все справочные материалы по алгебре, началам математического анализа и геометрии за курс средней школы. Данное справочное пособие предназначено прежде всего для выпускников средних общеобразовательных школ и абитуриентов, студентов втузов, а также для учителей, преподавателей вузов. 3-е издание.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!