x-uni.com
регистрация / вход
сейчас на линии 28 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 28 чел.
Лекции по математике, Том 13, Уравнения математической физики, Босс В., 2009

Лекции по математике, Том 13, Уравнения математической физики, Босс В., 2009

Лекции по математике, Том 13, Уравнения математической физики, Босс В., 2009.
 
  Рассматриваются непрерывные преобразования геометрических фигур с прицелом на изучение инвариантных свойств. Особое внимание уделяется задачам о неподвижных точках, иначе говоря, о разрешимости систем уравнений. Рассматриваются также основные направления алгебраической топологии в расчете на новичков.
Изложение отличается краткостью и прозрачностью.
Для студентов, преподавателей, инженеров и научных работников.

Замкнутые поверхности.
Определение замкнутой поверхности как двумерного многообразия, каждая точка которого имеет окрестность, гомеоморфную кругу, — несколько далековато от прозаических задач. Удобнее «близлежащая» дефиниция замкнутой поверхности как двумерного многообразия, полученного склеиванием сторон конечного числа выпуклых многоугольников с последующим гомеоморфным преобразованием. Такой прием уже использовался при образовании тора подходящим склеиванием сторон квадрата).

На этом пути мыслимое разнообразие поверхностей возникает на базе двух вариантов:
• Поверхности Мр получаются из сферы с р отверстиями, заклеенными ручками.
• Неориентируемые поверхности Nq получаются из сферы с q отверстиями, заклеенными листами Мёбиуса).

Оглавление
Предисловие к «Лекциям»
Предисловие к тринадцатому тому
Глава 1. Приготовления и авансы в наглядной редакции
1.1. Предмет топологии
1.2. Деформационная техника
1.3. Сферы с ручками
1.4. Рогатая сфера Александера
1.5. Лист Мёбиуса
1.6. Проективная плоскость
1.7. Ориентация
1.8. Бутылка Клейна
1.9. Узлы
1.10. Многообразия
1.11. Антуановское множество
1.12. Замкнутые поверхности
1.13. Метод инвариантов
1.14. Графовая структура поверхности
Глава 2. Неподвижные точки
2.1. Предварительные соображения
2.2. Гомотопические переходы
2.3. Вращение векторного поля
2.4. Гомотопные векторные поля
2.5. Скелет теории
2.6. Разрешимость уравнений
2.7. Еще раз об ориентации
2.8. Индексы и алгебраическое число нулей
2.9. Вращение линейного поля
2.10. Нечетные поля
2.11. Собственные векторы
2.12. Векторные поля на плоскости
Глава 3. Дополнения и приложения
3.1. Теорема Брауэра и ее обобщения
3.2. Глобальная обратимость
3.3. Технические уловки и фурнитура
3.4. Строгие определения вращения
3.5. Зачем нужна общность
Глава 4. Многозначные отображения
4.1. Общие сведения
4.2. О редукции задач
4.3. Отображения с выпуклыми образами
4.4. Теоремы о неподвижных точках
4.5. Теорема о селекторе
4.6. Отображения с невыпуклыми образами
Глава 5. Алгебраизация топологии
5.1. Результаты и рецепты
5.2. Абстрактная схема
5.3. Фундаментальная группа
5.4. Вычисление фундаментальной группы
5.5. Высшие гомотопические группы
5.6. Гомотопическая эквивалентность
5.7. Проблема Пуанкаре
5.8. Контрпримеры Пуанкаре и Уайтхеда
Глава 6. Симплициальные гомологии
6.1. В чем состоит идея
6.2. Симплициальные комплексы
6.3. Ориентируемые псевдомногообразия
6.4. Симплициальные отображения
6.5. Индуцируемые гомоморфизмы
6.6. Проблемы вычисления
Глава 7. Теория гомологий
7.1. Общая схема
7.2. CW-комплексы к клеточные гомологии
7.3. Сингулярные гомологии
7.4. Степень отображения
7.5. Числа Бетти и группа кручения
7.6. Эйлерова характеристика
7.7. Число Лефшеца
7.8. Градиентные потоки и теория Морса
7.9. Относительные гомологии
7.10. Точные последовательности
7.11. Когомологии
7.12. Взаимосвязь гомологий и гомотопий
Глава 8. Расслоения
8.1. Суть идеи
8.2. Формальные определения
8.3. Расслоения Хопфа
8.4. Поднятие гомотопии
8.5. Накрытия
Глава 9. Аппаратные формальности
9.1. Истоки непрерывности
9.2. Топологический подход
9.3. Фактортопология
9.4. Непрерывные отображения
9.5. Карты и атласы
9.6. Гомотопия векторных полей
9.7. Гомеоморфизмы
9.8. Дифференцируемость
9.9. Гладкие многообразия
9.10. Теорема Сарда
9.11. Обратные и неявные функции
Глава 10. Элементы теории групп
10.1. Определения и примеры
10.2. Смежные классы
10.3. Нормальные делители и фактор-группы
10.4. Автоморфизмы и гомоморфизмы
10.5. Порождающие множества
10.6. Свободные группы
10.7. Тождества в группах
10.8. Абелевы группы
10.9. Конечнопорожденные группы
10.10. Прямое произведение и прямая сумма
10.11. Циклическая природа абелевых групп
Глава 11. Избранные фрагменты
Сокращения и обозначения
Литература.

Скачать бесплатно на сайте fileskachat.com

Предложения интернет-магазинов

Показательные и логарифмические уравнения. ЕГЭ Математика. Выпуск 4

Автор(ы): Колесникова Софья Ильинична   Издательство: Азбука-2000, 2014 г.  Серия: МФТИ помогает готовиться к ЕГЭ

Цена: 124 руб.   Купить

Настоящий выпуск пособия состоит из заданий по теме "Показательные и логарифмические уравнения". Любая задача может быть включена в ЕГЭ по математике, а также разобрана на уроках математики. Пособие адресовано, прежде всего, старшеклассникам, готовящимся к ЕГЭ, математической олимпиаде, любому экзамену или просто желающим глубже изучить рассматриваемую в пособии тему. Также оно будет полезно учителям средней школы и служит дополнением к учебнику и отличным задачником по этой теме. Все задачи снабжены ответами и практически все - краткими решениями.


Квадратные уравнения и неравенства. Справочные материалы

  Издательство: Айрис-Пресс, 2015 г.  Серия: Справочные материалы. Математика

Цена: 17 руб.   Купить

Справочный материал по математике предназначен для индивидуальной работы учащихся в классе и дома. Пособие содержит систематизированную учебную информацию представленную в краткой табличной форме по темам: квадратные уравнения и неравенства, таблица квадратов целых чисел (от 0 до 99). Пособие позволяет быстро находить необходимые сведения по теме, обобщить знания, способствует более прочному запоминанию учебного материала.


Решаем примеры и уравнения. 1 класс

Автор(ы): Коротяева Елизавета Валентиновна   Издательство: Феникс, 2015 г.  Серия: Внеклассный практикум

Цена: 101 руб.   Купить

Пособие "Решаем примеры и уравнения. 1 класс" предназначено для самостоятельной работы учащихся. Каждый раздел четко структурирован: он содержит правила, образцы выполненных заданий различных типов, предусмотренных программой по математике для начальной школы, и упражнения для отработки практических навыков. В книге размещены ключи ко всем заданиям. Издание предназначено для учеников младших классов, их родителей и учителей. 2-е издание.


Решаем примеры и уравнения. 3 класс

Автор(ы): Коротяева Елизавета Валентиновна   Издательство: Феникс, 2015 г.  Серия: Внеклассный практикум

Цена: 101 руб.   Купить

Пособие "Решаем примеры и уравнения. 3 класс" предназначено для самостоятельной работы учащихся. Каждый раздел четко структурирован: он содержит правила, образцы выполненных заданий различных типов, предусмотренных программой по математике для начальной школы, и упражнения для отработки практических навыков. В книге размещены ключи ко всем заданиям. Издание предназначено для учеников младших классов, их родителей и учителей. Для детей младшего школьного возраста.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!