x-uni.com
регистрация / вход
сейчас на линии 146 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 146 чел.
Матрицы и системы линейных уравнений, Лизунова Н.А., Шкроба С.П., 2007

Матрицы и системы линейных уравнений, Лизунова Н.А., Шкроба С.П., 2007

Матрицы и системы линейных уравнений, Лизунова Н.А., Шкроба С.П., 2007.

Книга содержит разнообразный методический материал по линейной алгебре. В неё включены задачи с решениями, задачи для самостоятельной работы с ответами, а также контрольные задания. Наряду с алгоритмически-вычислительными задачами в пособии рассматривается много задач теоретического характера. Сознательное использование матриц небольшого размера привело к появлению большого числа новых интересных задач и новым решениям хорошо известных старых задач. Традиционные разделы линейной алгебры естественным образом дополнены клеточными матрицами, разностными и матричными уравнениями, конечными суммами и элементами метрической теории матриц. Допущено Министерством образования и науки Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по экономическим специальностям и направлениям подготовки и специальностям в области техники и технологии.

Определитель матрицы.
1) Определитель матрицы — это специальная сумма, состоящая из произведений. Нетрудно видеть, что чем больше нулей в матрице, тем легче вычисляется ее определитель.

2) Если нулей в матрице нет или их мало, то можно получить достаточно много нулей с помощью элементарных преобразований (см. свойства 8-10). Полезно думать, что свойства 8-10 — это основной «производитель» нулей в матрице.

3) Если свойство 14 применять достаточное количество раз, то вычисление определителя матрицы n-го порядка (n > 4) можно свести к вычислению определителей матриц второго или третьего порядка, которые можно найти по определению. Кроме того, в свойстве 14 желательно выбирать строку (столбец) с большим числом нулей или с помощью элементарных преобразований добиться того, чтобы нулей было как можно больше.

Оглавление
Предисловие
§1. Матрицы. Основные определения. Виды матриц. Действия с матрицами
1.1. Основные определения. Виды матриц
1.2. Линейные операции над матрицами
1.3. Умножение матриц. Степень матрицы
1.4. Транспонирование матрицы
1.5. След матрицы
1.6. Элементарные преобразования матриц. Приведение матриц к ступенчатому виду с помощью элементарных преобразований
§2. Определители
2.1. Определители матриц первого, второго и третьего порядка и их связь с операциями над матрицами, геометрический смысл и непосредственное вычисление определителей
2.2. Определители матриц n-го порядка (n > 2, n — целое). Определение и свойства. Методы вычисления
§3. Обратная матрица. Линейные преобразования
3.1. Обратная и взаимная матрицы, их свойства
3.2. Линейные преобразования
§4. Разбиение матриц четвертого порядка на клетки второго порядка
§5. Ортогональные матрицы
§6. Ранг матрицы
6.1. Определение ранга матрицы
6.2. Методы нахождения ранга матрицы
6.3. Линейная зависимость и независимость строк и столбцов. Теорема о ранге матрице. Теорема о базисном миноре
§7. Решение систем линейных уравнений
7.1. Основные понятия
7.2. Решение систем линейных уравнений с помощью обратной матрицы и по формулам Крамера
7.3. Теорема Кронекера-Капелли. Теорема о числе решений совместной системы. Метод Гаусса
7.4. Системы линейных однородных уравнений
§8. Собственные числа и собственные векторы квадратной матрицы. Нахождение степени квадратной матрицы второго порядка с помощью ее собственных чисел. Приведение симметрической матрицы к диагональному виду
8.1. Собственные числа и собственные векторы матрицы
8.2. Нахождение степени квадратной матрицы второго порядка с помощью собственных чисел
8.3. Приведение симметрических матриц второго и третьего порядка к диагональному виду
§9. Норма матрицы. Расстояние между матрицами
§10. О влиянии малых изменений коэффициентов при неизвестных и свободных членов системы линейных уравнений на изменение ее решений. Приближенное решение систем линейных уравнений методом итераций
10.1.0 влиянии малых изменений коэффициентов при неизвестных и свободных членов системы линейных уравнений на изменение ее решений
10.2. Решение систем линейных уравнений методом итераций
§11. Избранные матричные уравнения
§12. Конечные суммы и их свойства. Разностные уравнения и конечные суммы. Функции от матриц, теорема Гамильтона-Кэли и разностные уравнения
12.1. Конечные суммы и их свойства
12.2. Линейные разностные уравнения второго порядка с постоянными коэффициентами. Теорема Гамильтона-Кэли. Функции от матриц.
Ответы
Приложение
Варианты контрольных работ
Ответы к контрольным работам
Список литературы.

Скачать бесплатно на сайте fileskachat.com

Предложения интернет-магазинов

Алгебра. 7 класс. Рабочая тетрадь. В 2-х частях. Часть 2. К учебнику Ю.Н. Макарычева и др.

Автор(ы): Миндюк Нора Григорьевна, Шлыкова Инга Соломоновна   Издательство: Просвещение, 2015 г.  Серия: Математика и информатика

Цена: 108 руб.   Купить

Данная работа является дополнением к учебнику "Алгебра, 7" авторов Ю.Н.Макарычева и др., под редакцией С.А. Теляковского. Рабочая тетрадь включает 40 работ, составленных ко всем пунктам учебника, за исключением дополнительных пунктов под рубрикой "Для тех, кто хочет знать больше". Она представлена в двух частях. Во вторую часть вошли работы, относящиеся к трем последующим главам: "Многочлены", "Формулы сокращенного умножения", "Системы линейных уравнений". 4-е издание


Системы уравнений. Справочный материал

  Издательство: Айрис-Пресс, 2014 г.  Серия: Справочные материалы. Математика

Цена: 17 руб.   Купить

Наглядное пособие поможет закрепить и частично расширить сведения, полученные школьниками на уроках математике по теме "Системы уравнений". Пособие отличают удобный формат и ёмкость изложения. Сжатые теоретические сведения и основные формулы помогут школьникам быстро сориентироваться в материале, проанализировать и выбрать верное решение задачи. Пособие будет полезно учащимся при подготовке к контрольным, самостоятельным работам и подготовке к ЕГЭ.


Преобразования. Целые числа. ЕГЭ Математика. Выпуск 6

Автор(ы): Колесникова Софья Ильинична   Издательство: Азбука-2000, 2010 г.  Серия: МФТИ помогает готовиться к ЕГЭ

Цена: 124 руб.   Купить

Этот выпуск адресован одновременно выпускникам 9-го класса, сдающим ГИА, и выпускникам 11-го класса, сдающим ЕГЭ. Он может служить замечательным дополнением к школьным учебникам 9 - 11 классов (или даже заменой учебников, которые сданы), а также может помочь учителям в проведении факультативных занятий по математике, начиная с 8-го класса. Рассматриваются упрощения алгебраических выражений, решение линейных уравнений с параметром, действия с целыми числами и решение не самых простых задач с целыми числами.


Математика. 1-4 классы. Учимся решать уравнения. Тренировочная тетрадь. Учебно-методическое пособие

Автор(ы): Ольховая Людмила Сергеевна, Нужа Галина Леонтьевна   Издательство: Легион, 2013 г.  Серия: Начальное общее образование

Цена: 93 руб.   Купить

Данное пособие разработано для учащихся начальной школы, обучающихся по различным УМК, рекомендуемым Министерством образования и науки Российской Федерации, и предназначено для отработки умений и навыков решения уравнений и задач с помощью уравнений. Материал книги составлен в соответствии с требованиями Федерального государственного образовательного стандарта начального общего образования. В предлагаемом пособии представлены задания разного уровня сложности, соответствующие дидактическим линиям общеобразовательной программы начальной школы: 120 заданий на решение уравнений, 30 заданий на решение задач с помощью уравнений и 10 заданий на решение уравнений, заданных в схемах и картинках. Ко всем заданиям приведены ответы. В пособии отводится место для решения уравнений, поэтому его можно использовать в качестве тренировочной тетради. 2-е издание, переработанное.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!