x-uni.com
регистрация / вход
сейчас на линии 76 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 76 чел.
Методы оптимизации, Аттетков А.В., Галкин С.В., Зарубин В.С., 2003

Методы оптимизации, Аттетков А.В., Галкин С.В., Зарубин В.С., 2003

Методы оптимизации, Аттетков А.В., Галкин С.В., Зарубин В.С., 2003.

  Книга посвящена одному из важнейших направлений подготовки выпускника технического университета — математической теории оптимизации. Рассмотрены теоретические, вычислительные и прикладные аспекты методов конечномерной оптимизации. Много внимания уделено описанию алгоритмов численного решения задач безусловной минимизации функций одного и нескольких переменных, изложены методы условной оптимизации. Приведены примеры решения конкретных задач, дана наглядная интерпретация полученных результатов, что будет способствовать выработке у студентов практических навыков применения методов оптимизации.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.

ЗАДАЧИ ОПТИМИЗАЦИИ.
В своей жизни человек часто сталкивается с ситуацией, когда ему из некоторой совокупности возможных вариантов своего поведения или принятия решения в какой-либо области деятельности необходимо выбрать один вариант. Наилучший вариант поведения (принятие наилучшего решения) можно выбирать по-разному. Если такой выбор предусматривает проведение количественного анализа ситуации путем сравнения различных вариантов с помощью какой-либо количественной оценки этих вариантов, то говорят о необходимости решения задачи оптимизации (по латыни optimus наилучший). Ясно, что задача оптимизации имеет смысл, если есть несколько возможных вариантов ее решения. Эти варианты обычно называют альтернативами.

По содержанию задачи оптимизации весьма разнообразны. Они могут быть связаны с проектированием технических устройств и технологических процессов, с распределением ограниченных ресурсов и планированием работы предприятий, наконец, с решением проблем, возникающих в повседневной жизни человека. Всевозможные устройства, процессы и ситуации, применительно к которым предстоит решать задачу оптимизации, объединим общим названием объект оптимизации.

Оглавление
Предисловие
Основные обозначения
1. Задачи оптимизации
1.1. Основные понятия
1.2. Некоторые простые примеры
1.3. Задачи оптимального проектирования
1.4. Задачи оптимального планирования
1.5. Классы задач оптимизации
Вопросы и задачи
2. Методы одномерной минимизации
2.1. Предварительные замечания
2.2. Пассивный и последовательный поиск
2.3. Оптимальный пассивный поиск
2.4. Методы последовательного поиска
2.5. Сравнение методов последовательного поиска
2.6. Методы полиномиальной аппроксимации
2.7. Методы с использованием производных
Вопросы и задачи
3. Минимизация выпуклых функций
3.1. Выпуклые множества
3.2. Выпуклые функции
3.3. Дифференцируемые выпуклые функции
3.4. Условия минимума выпуклых функций
3.5. Сильно выпуклые функции
3.6. Примеры минимизации квадратичных функций
3.7. Минимизация позиномов
Вопросы и задачи
4. Численные методы безусловной минимизации
4.1. Релаксационная последовательность
4.2. Методы спуска
4.3. Метод градиентного спуска
4.4. Минимизация квадратичной функции
4.5. Сопряженные направления спуска
Вопросы и задачи
5. Алгоритмы методов первого и второго порядков
5.1. Алгоритмы метода градиентного спуска
5.2. Метод сопряженных направлений
5.3. Метод Ньютона
5.4. Модификации метода Ньютона
5.5. Квазиньютоновские методы
Вопросы и задачи
6. Алгоритмы прямого поиска
6.1. Особенности прямого поиска минимума
6.2. Использование регулярного симплекса
6.3. Поиск при помоши нерегулярного симплекса
6.4. Циклический покоординатный спуск
6.5. Метод Хука Дживса
6.6. Методы Розенброка и Пауэлла
Вопросы и задачи
7. Аналитические методы нелинейного программирования
7.1. Минимизация целевой функции на заданном множестве
7.2. Минимизация при ограничениях типа равенства
7.3. Общая задача нелинейного программирования
7.4. Седловая точка функции Лагранжа
7.5. Двойственная функция
7.6. Геометрическое программирование
Вопросы и задачи
8. Численные методы нелинейного программирования
8.1. Метод условного градиента
8.2. Использование приведенного градиента
8.3. Проектирование точки на множество
8.4. Метод проекции точки на множество
8.5. Метод проекции антиградиента
8.6. Другие методы проектирования
8.7. Метод возможных направлений ^
8.8. Методы последовательной безусловной минимизации
Д.8.1. Некоторые приемы обращения матрицы
Вопросы и задачи
Список рекомендуемой литературы
Предметный указатель.

Предложения интернет-магазинов

ЕГЭ-2012. Обществознание. Учебно-справочное пособие

Автор(ы): Барабанов Владимир Васильевич, Дорская Александра Андреевна, Зарубин Валерий Григорьевич, Косицын Владимир Борисович, Насонова Ирина Петровна   Издательство: АСТ, 2012 г.  Серия: Справочник школьника

Цена: 121 руб.   Купить

Справочник включает все программные темы курса "Обществознание" для 8-11 классов. Представлены материалы по философским, экономическим, социальным и правовым вопросам. Книга будет незаменимым помощником при изучении и закреплении нового материала и повторении пройденных тем, а также при подготовке к зачетам, выпускным экзаменам в школе и вступительным экзаменам в любой вуз.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!