x-uni.com
регистрация / вход
сейчас на линии 153 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 153 чел.
Практические занятия по математике, Богомолов, 2003

Практические занятия по математике, Богомолов, 2003

Практические занятия по математике, Богомолов Н.В., 2003.

   Настоящее пособие (5-е изд. — 2002 г. ) представляет собой руководство к решению задач по всем разделам программы по математике для техникумов на базе неполной и полной средней школы.
Основное назначение пособия — помочь студенту самостоятельно, без помощи преподавателя, изучить приемы решения задач по математике, закрепить и углубить навыки, приобретенные при решении этих задач.
Для студентов средних специальных учебных заведений. Может быть использовано студентами колледжей.

Верные и значащие цифры числа.
Цифра m приближенного числа а называется верной в широком смысле, если граница абсолютной погрешности числа а не превосходит единицы того разряда, в котором записывается цифра m.
Цифра m приближенного числа а называется верной в строгом смысле, если граница абсолютной погрешности числа а не превосходит половины единицы того разряда, в котором записана цифра m.

В числах, полученных в результате измерений или вычислений и используемых при расчетах в качестве исходных данных, а также в десятичной записи приближенного значения числа, все цифры должны быть верными.

Наиболее употребительна такая запись приближенного числа (например, в математических таблицах), при которой цифры верны в строгом смысле.
Граница абсолютной погрешности а находится непосредственно по записи приближенного значения а числа х.

ОГЛАВЛЕНИЕ
Предисловие 9
Раздел I Элементы вычислительной математики
Глава 1. Погрешности приближенных значений чисел 10
§ 1. Абсолютная погрешность приближенного значения числа. Граница абсолютной погрешности 10
§ 2. Верные цифры числа. Запись приближенного значения числа. Округление приближенных значений чисел 11
§ 3. Относительная погрешность приближенного значения числа 13
Глава 2. Действия над приближенными значениями чисел 14
§ 1. Сложение приближенных значений чисел 14
§ 2. Вычитание приближенных значений чисел 15
§ 3. Умножение приближенных значений чисел 16
§ 4. Деление приближенных значений чисел 17
§ 5. Возведение в степень приближенных значений чисел и извлечение из них корня 18
§ 6. Вычисления с наперед заданной точностью 18
§ 7. Решение прямоугольных треугольников с применением микрокалькулятора 19
§ 8. Решение косоугольных треугольников 21
§ 9. Смешанные задачи 24
Раздел II Алгебра и начала анализа
Глава 3. Системы уравнений и неравенств 25
§ I. Решение линейных уравнений с одной переменной 25
§ 2. Решение линейных неравенств с одной переменной 28
§ 3. Системы и совокупности неравенств с одной переменной 29
§ 4. Неравенства с одной переменной, содержащие переменную под знаком модуля 33
§ 5. Решение систем двух линейных уравнений с двумя переменными 34
§ 6. Решение систем трех линейных уравнений с тремя переменными 37
§ 7. Решение квадратных уравнений 39
§ 8. Свойства корней квадратного уравнения. Разложение квадратного трехчлена на множители 41
§ 9. Решение уравнений приводимых к квадратным 43
§ 10. Задачи на составление квадратных уравнений 45
§ 11. Графическое решение квадратных неравенств 46
§ 12. Иррациональные уравнения 48
§ 13. Иррациональные неравенства с одной переменной 51
§ 14. Нелинейные системы уравнений и неравенств с двумя переменными 52
§ 15. Задачи на составление систем уравнений 55
§ 16. Простейшие задачи линейного программирования с двумя переменными 55
Глава 4. Функция. Логарифмическая и показательная функции 58
§ 1. Функция. Область определения и множество значений функции 58
§ 2. Логарифмическая функция 60
§ 3. Показательные уравнения 62
§ 4. Системы показательных уравнений 64
§ 5. Показательные неравенства 65
§ 6. Логарифмические уравнения 66
§ 7. Системы логарифмических уравнений 68
§ 8. Логарифмические неравенства 68
§ 9. Смешанные задачи 69
Глава 5. Бесконечная числовая последовательность. Предел последовательности 71
§ 1. Бесконечная числовая последовательность 71
§ 2. Предел числовой последовательности 73
Глава 6. Предел функции 76
§ 1. Вычисление предела функции 76
§ 2. Число е. Натуральные логарифмы 81
§ 3. Смешанные задачи 82
§ 4. Приращение аргумента и приращение функции 83
§ 5. Непрерывность функции 84
§ 6. Точки разрыва функции 86
§ 7. Асимптоты 87
§ 8. Решение дробно-рациональных неравенств методом промежутков 89
Глава 7. Производная 92
§ 1. Скорость изменения функции 92
§ 2. Производная 94
§ 3. Основные правила дифференцирования. Производные степени и корня 95
§ 4. Производная сложной функции 98
§ 5. Физические приложения производной 100
§ 6. Производные логарифмических функций 102
§ 7. Производные показательных функций 103
§ 8. Смешанные задачи 104
Глава 8. Приложения производной к исследованию функций 105
§ 1. Возрастание и убывание функции 105
§ 2. Исследование функции на экстремум с помощью первой производной 107
§ 3. Исследование функции на экстремум с помощью второй производной
§ 4. Наименьшее и наибольшее значения функции 111
§ 5. Задачи на нахождение наименьших и наибольших значений величин 111
§ 6. Направление выпуклости графика функции ИЗ
§ 7. Точки перегиба 114
§ 8. Построение графиков функций 115
Глава 9. Тригонометрические функции 118
§ 1. Радианное измерение дуг и углов 118
§ 2. Единичная числовая окружность 121
§ 3. Тригонометрические функции числового аргумента 123
§ 4. Знаки, числовые значения и свойства четности и нечетности тригонометрических функций 124
§ 5. Основные тригонометрические тождества 128
§ 6. Периодичность тригонометрических функций 132
§ 7. Обратные тригонометрические функции 134
§ 8. Построение дуги (угла) по данному значению тригонометрической функции 135
§ 9. Тригонометрические уравнения 140
§ 10. Тригонометрические неравенства 145
§ 11. Свойство полупериода синуса и косинуса 147
§ 12. Формулы приведения 148
§ 13. Смешанные задачи 149
§ 34. Тригонометрические функции алгебраической суммы двух аргументов (формулы сложения) 150
§ 15. Смешанные задачи 154
§ 16. Тригонометрические функции удвоенного аргумента 155
§ 17. Тригонометрические функции половинного аргумента 157
§ 18. Смешанные задачи 169
§ 19. Преобразование произведения тригонометрических функций в алгебраическую сумму 162
§ 20. Преобразование алгебраической суммы тригонометрических функций в произведение 163
§ 21. Преобразования с помощью вспомогательного аргумента 166
§ 22. Смешанные задачи 168
§ 23. Вычисление пределов тригонометрических функций. Предел отношения xin x/x при х->0 169
§ 24. Производные тригонометрических функций 1 171
§ 25. Производные обратных тригонометрических функций 173
§ 26. Вторая производная и ее приложения 174
§ 27. Гармонические колебания 175
§ 28. Основные свойства тригонометрических функций 177
§ 29. Построение графиков тригонометрических функций 177
§ 30. Смешанные задачи 178
Глава 10. Дифференциал функции. Приложение дифференциала к приближенным вычислениям 180
§ 1. Вычисление дифференциала функции 180
§ 2. Абсолютная и относительная погрешности 181
§ 3. Вычисление приближенного числового значения функции 182
§ 4. Формулы для приближенных вычислений 183
§ 5. Вычисления по способу строго учета погрешностей 184ч
§ 6. Смешанные задачи 187
Глава 11. Неопределенный интеграл 188
§ 1. Основные формулы интегрирования. Непосредственное интегрирование 188
§ 2. Геометрические приложения неопределенного интеграла 194
§ 3. Физические приложения неопределенного интеграла 196
§ 4. Интегрирование методом замены переменной 198
§ 5. Интегрирование по частям 201
§ 6. Интегрирование некоторых тригонометрических функций 203
§ 7. Смешанные задачи 204
Глава 12. Определенный интеграл 205
§ 1. Определенный интеграл и его непосредственное вычисление 205
§ 2. Вычисление определенного интеграла методом замены переменной 208
§ 3. Интегрирование по частям в определенном интеграле 210
§ 4. Приближенное вычисление определенных интегралов 211
Глава 13. Приложения определенного интеграла 212
§ 1. Применение определенного интеграла к вычислению различных величин. Площадь плоской фигуры 212
§ 2. Вычисление пути, пройденного точкой 219
§ 3. Вычисление работы силы 221
§ 4. Вычисление работы, производимой при поднятии груза 223
§ 5. Вычисление силы давления жидкости 225
§ 6. Длина дуги плоской кривой 227
Глава 14. Комплексные числа 229
§ 1. Комплексные числа и их геометрическая интерпретация 229
§ 2. Действия над комплексными числами, заданными в алгебраической форме 233
§ 3. Действия над комплексными числами, заданными в тригонометрической форме 235
§ 4, Показательная функция с комплексным показателем. Формулы Эйлера 239
§ 5. Смешанные задачи 242
Глава 15. Дифференциальные уравнения 243
§ 1. Дифференциальные уравнения первого порядка с разделяющимися переменными 243
§ 2. Задачи на составление дифференциальных уравнений 245
§ 3. Линейные дифференциальные уравнения первого порядка 248
§ 4. Неполные дифференциальные уравнения второго порядка 250
§ 5. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами 253
§ 6. Смешанные задачи 256
Глава 16. Элементы комбинаторики и теории вероятностей 257
§ 1. Элементы комбинаторики 257
§ 2. Случайные события. Вероятность события 260
§ 3. Теоремы сложения вероятностей 262
§ 4. Теоремы умножения вероятностей 264
§ 5. Формула полной вероятности. Формула Байеса 265
§ 6. Повторение испытаний. Формула Бернулли 266
§ 7. Смешанные задачи 267
Раздел III Геометрия
Глава 17. Векторы на плоскости 269
§ I. Основные понятия и определения 269
§ 2. Сложение и вычитание векторов. Умножение вектора на число 270
§ 3. Прямоугольная система координат 273
§ 4. Длина вектора. Расстояние между двумя точками на плоскости. Углы, образуемые вектором с осями координат 276
§ 5. Деление отрезка в данном отношении 278
§ 6, Скалярное произведение двух векторов 279
§ 7. Преобразования прямоугольных координат 281
§ 8. Полярные координаты 283
§ 9. Смешанные задачи 284
Глава 18. Прямая на плоскости и ее уравнения 286
§ 1. Общее уравнение прямой. Векторное и каноническое уравнения прямой 286
§ 2. Уравнение прямой в отрезках на осях 289
§ 3. Уравнение прямой с угловым коэффициентом 290
§ 4. Уравнение прямой, проходящей через данную точку в заданном направлении 293
§ 5. Уравнение прямой, проходящей через две данные точки 294
§ 6. Пересечение двух прямых 295
§ 7. Угол между двумя прямыми 296
§ 8. Условие параллельности двух прямых 299
§ 9. Условие перпендикулярности двух прямых 300
§ 10. Смешанные задачи 302
Глава 19. Кривые второго порядка 304
§ 1. Множества точек на плоскости 304
§ 2. Окружность 306
§ 3. Эллипс 310
§ 4. Гипербола 312
§ 5. Парабола с вершиной в начале координат 315
§ 6. Парабола со смещенной вершиной 318
§ 7. Касательная и нормаль к кривой 321
§ 8. Смешанные задачи 326
Глава 20. Прямые и плоскости в пространстве 327
§ 1. Параллельность прямых и плоскостей 327
§ 2. Перпендикулярность в пространстве. Двугранные и многогранные углы 330
§ 3. Смешанные задачи 333
Глава 21. Векторы в пространстве 335
§ 1. Основные понятия. Прямоугольная система координат в пространстве 4 335
§ 2. Скалярное произведение векторов в пространстве 339
§ 3. Векторное произведение 340
§ 4. Смешанные задачи 342
Глава 22. Уравнения прямой и плоскости в пространстве 343
§ 1. Плоскость 343
§ 2. Прямая в пространстве 347
§ 3. Плоскость и прямая 350
§ 4. Смешанные задачи 352
Глава 23. Многогранники и площади их поверхностей 353
§ 1. Призма 353
§ 2. Площадь поверхности призмы 355
§ 3. Пирамида. Усеченная пирамида 357
§ 4. Площадь поверхности пирамиды и усеченной пирамиды 360
§ 5. Смешанные задачи 361
Глава 24. Фигуры вращения 363
§ 1. Цилиндр 363
§ 2. Конус. Усеченный конус 364
§ 3. Сфера. Шар 365
§ 4. Вписанная и описанная сферы 367
§ 5. Смешанные задачи 369
Глава 25. Объемы многогранников и фигур вращения 370
§ 1. Объем параллелепипеда и призмы 370
§ 2. Объем пирамиды 372
§ 3. Объем усеченной пирамиды 373
§ 4. Исследования на экстремум в задачах на объемы многогранников 373
§ 5. Объем фигур вращения 374
§ 6. Исследования на экстремум в задачах на объемы фигур вращения 376
§ 7. Вычисление объемов фигур вращения с помощью определенного интеграла 378
§ 8. Смешанные задачи 381
Глава 26. Площади поверхностей фигур вращения 383
§ 1. Площади боковой и полной поверхностей цилиндра 383
§ 2. Площади боковой и полной поверхностей конуса 384
§ 3. Площади боковой и полной поверхностей усеченного конуса 385
§ 5. Исследования на экстремум в задачах на площади поверхностей фигур вращения 386
§ 6. Вычисление площадей поверхностей фигур вращения с помощью определенного интеграла 387
§ 7. Смешанные задачи 389
Раздел IV Дополнительные главы
Глава 27. Ряды 391
§ 1. Числовые ряды 391
§ 2. Необходимый признак сходимости ряда. Достаточные признаки сходимости рядов с положительными членами 395
§ 3. Знакопеременные и знакочередующиеся ряды. Абсолютная и условная сходимость. Признак сходимости Лейбница для знакочередующихся рядов 400
§ 4. Вычисление суммы членов знакочередующегося ряда с заданной точностью и оценка остатка ряда 403
§ 5. Степенные ряды 405
§6. Разложение функций в степенные ряды 409
§ 7. Применение степенных рядов к приближенным вычислениям значений функций 416
§ 8. Вычисление определенных интегралов с помощью степенных рядов 417
Глава 28. Ряды Фурье 419
§ 1. Тригонометрический ряд Фурье 419
§ 2. Ряд Фурье для нечетной функции 423
§ 3. Ряд Фурье для четной функции 426
§ 4. Разложение в ряд Фурье функции, заданной в промежутке 0<JC<2TC 428
§ 5. Разложение в ряд Фурье функции, заданной в произвольном промежутке 430
§ 6. Разложение в ряды Фурье некоторых функций, часто встречающихся в электротехнике 433
Глава 29. Двойные интегралы 435
§ 1. Функции нескольких переменных 435
§ 2. Частные производные и полный дифференциал 438
§ 3. Двойной интеграл и его вычисление 439
§ 4. Двойной интеграл в полярных координатах 447
§ 5. Вычисление площади плоской фигуры 450
§ 6. Вычисление объема тела 451
§ 7. Вычисление площади поверхности 454
§ 8. Вычисление массы плоской фигуры 459
§ 9. Вычисление статических моментов плоской фигуры 460
§ 10. Координаты центра тяжести плоской фигуры 463
§ 11. Вычисление моментов инерции плоской фигуры 466
Ответы 466.

Скачать бесплатно на сайте fileskachat.com

Предложения интернет-магазинов

Петербургские олимпиады школьников по математике. 2003-2005

  Издательство: BHV, 2007 г.

Цена: 294 руб.   Купить

Книга предназначена для школьников, учителей, преподавателей математических кружков и просто любителей математики. Читатель найдет в ней задачи Санкт-Петербургских олимпиад школьников по математике 2003-2005 гг., а также открытой олимпиады ФМЛ № 239, которая, не будучи туром Санкт-Петербургской олимпиады, по характеру задач, составу участников и месту проведения является прекрасным дополнением к ней. Все задачи приведены с подробными решениями, условия и решения геометрических задач сопровождаются рисунками. В книгу включены также подборки задач XIV-XV Летних конференций турнира городов (2003, 2004 гг.) и несколько статей на околоолимпиадные темы - от развернутых решений отдельных задач до теоретических опусов. В одном из них впервые на русском языке изложена "комбинаторная теорема о нулях", которая находит все большее применение в числовых и комбинаторных задачах. Составители: С.В. Иванов, К.П. Кохась, А.И. Храбров.


Начальная школа. Нестандартные уроки с применением информационных технологий (+CD)

Автор(ы): Багаева Милана Аркадьевна   Издательство: Планета (уч), 2014 г.  Серия: Современная школа

Цена: 360 руб.   Купить

В сборнике представлены уроки и внеклассные занятия, разработанные в соответствии с требованиями стандарта второго поколения. Сборник состоит из четырех частей, в которых представлены уроки по литературному чтению, занятия по патриотическому воспитанию, по здоровьесбережению, экологическому воспитанию и библиотечные уроки. Книга дополнена электронным приложением (CD-диск), на котором представлены мультимедийные презентации к каждой разработке, выполненные в программе Power Point 2003. Мультимедийные презентации позволят учителю сделать занятия более яркими, интересными, запоминающимися и продуктивными, визуализировать процесс познания, а значит активизировать интеллектуальную деятельность обучающихся. CD-диск можно использовать при помощи мультимедийного проектора или на интерактивной доске любого типа. Данное методическое пособие предназначено для учителей начальных классов, методистов, слушателей системы повышения квалификации работников образования, студентов педагогических вузов и колледжей


Современные образовательные технологии в обучении географии: опыт работы, разработки уроков

Автор(ы): Бибекова Ольга Александровна, Ласикова Людмила Алексеевна, Приходько Нина Васильевна   Издательство: Учитель, 2011 г.  Серия: Методическая работа в школе

Цена: 108 руб.   Купить

Данное методическое пособие - это комплекс современных и практических технологий, направленных на подготовку и проведение таких уроков географии, на которых каждый ученик будет вовлечен в учебный процесс. Для создания комфортных и развивающих условий занятия важно создать позитивную и рабочую атмосферу, научить учащихся работать в единой команде. Использование педагогических методик позволяет проводить увлекательные и информативные занятия, в результате которых у всего класса будет формироваться интерес к изучению предмета. В пособии представлены разработки уроков, тематическое планирование, конкретные методики построения занятия и практические рекомендации.


Математика. 2 класс. Занятия для начальной школы

  Издательство: Стрекоза, 2015 г.  Серия: Занятия для начальной школы

Цена: 273 руб.   Купить

Серия книг "Занятия для начальной школы" создана в помощь ученикам 1-4 классов. Предназначена для расширения и углубления знаний, полученных второклассниками на уроках в школе. В серии также вышли книги "Русский язык" (1-4 класс) и "English" (1-4 class). Эта книга поможет ученикам: Развить навыки счета, научиться быстро решать примеры и задачи; Сравнивать числа в пределах 100; Научиться различать геометрические фигуры и тела; Ориентироваться в денежных единицах; Научиться определять время по часам. Кроссворды, головоломки, судоку и раскраски, представленные в пособии, сделают занятия более увлекательными и помогут поддержать интерес учеников к математике. Для совместных занятий взрослых и детей.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!