x-uni.com
регистрация / вход
сейчас на линии 129 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 129 чел.
Прикладная стохастика, Робастность, Оценивание, Прогноз, Шурыгин A.M., 2000

Прикладная стохастика, Робастность, Оценивание, Прогноз, Шурыгин A.M., 2000

Прикладная стохастика, Робастность, Оценивание, Прогноз, Шурыгин A.M., 2000.

   Изложена разработанная автором методика оптимизации оценивания параметров произвольных (в отличие от робастности) распределений по двум признакам (эффективности и устойчивости) с использованием методов вариационного исчисления. Она дает наилучшую возможность прогнозирования случайных процессов и точечных полей, фигурирующих в начальных условиях многих практических задач в финансовой сфере, социологии, естественных и технических науках.
Для преподавателей, аспирантов и студентов старших курсов вузов, специализирующихся в области математической статистики и ее приложений, а также для специалистов, использующих стохастические методы.

Мультипликативные помехи.
Проблема устойчивости важна не только для загрязнённых выборок (это частный случай), но всегда в приложениях из-за сложности распределения по сравнению с модельным. Все вышеизложенные задачи были направлены на получение оценок, которые “хорошо работают” в модели, отличающейся от рассматриваемой. Но задачи были теоретическими, и для убедительности решений был бы полезен пример, близкий к практике. Если распределение действительно сложное, плотность не выписывается и асимптотические методы не годятся, вполне уместна статистическая имитация.

Таким примером могут быть нормальные наблюдения с мультипликативной помехой. Они часто встречаются. Например, при подсчёте удельных запасов по некоторому пересечению жилы полезного ископаемого мощность (толщина) жилы умножается на содержание полезного компонента, в цифре которого уже содержатся мультипликативные погрешности лабораторного анализа. Мультипликативные модели работают и в экономике: цены не бывают отрицательными.

СОДЕРЖАНИЕ
К читателю Введение
Часть 1. Устойчивое оценивание модели
I. Оценивание параметров распределения
I.1. Оценки минимума контраста
I.2. Оценивание центра нормального распределения: задачи Колмогорова, Тьюки и теория робастности
I.3. Квадратичная ошибка оценки минимума контраста
I.4. Методы функциональной оптимизации оценивания
I.5. Загрязнение и аппроксимация
I.6. Максиминная оптимизация: медианные и стойкие оценки
I.7. Примеры максиминной оптимизации оценивания
I.8. Локальная устойчивость: компромиссные и радикальные оценки
I.9. Примеры вариационной оптимизации оценивания
I.10. Устойчивость оценки центра к большим изменениям
I.11. Сравнение методов
I.12. Радикальность оценок
I.13. Мультипликативные помехи
I.14. Выводы
II. Оценивание параметров многомерного нормального распределения
II.1. Оценки минимума контраста
II.2. Оценки Мешалкина
II.3. Статистический кластер-критерий и “выбор заёмщика”
II.4. Максиминная оптимизация: медианные и стойкие оценки
II.5. Вариационная оптимизация: компромиссные и радикальные оценки
II.6. Регуляризация оценки матрицы ковариаций
II.7. Шаровое распределение и его проекции
II.8. Выводы
III. Регрессия
III.1. Минимально контрастная, классическая и робастная регрессия
III.2. Погрешность регрессии минимума контраста
III.3. Максиминная оптимизация: медианная и стойкая регрессия
III.4. Линейная множественная регрессия
III.5. Сравнение регрессий
III.6. Экстраполяция локально-линейного тренда
III.7. Вариационная оптимизация: компромиссная и радикальная регрессии
III.8. Выбор модели
III.9. Простейшие регрессии
III.10. Редуцированная регрессия
III.11. Выводы
IV. Линейная классификация
IV. 1. Решения многомерной статистики
IV.2. Приложения многомерной статистики
IV.3. Редуцированное решение
IV.4. Сравнение методов
IV.5. Вариационная устойчивость методов
IV.6. Редуцированное решение для экспоненциально взвешенных оценок
IV.7. Выводы
V. Обсуждение результатов
Часть 2. Прогноз однородных случайных процессов
1 Стационарный процесс и процесс со стационарными приращениями
2. Регулярный прогноз случайных процессов
3. Прогноз гауссовского стационарного процесса и его дисперсия
4. Прогноз гауссовского процесса со стационарными приращениями и его дисперсия
5. Соотношения с авторегрессией
6. Обсуждение результатов
Часть 3. Прогноз однородных точечных полей
I. Распределение межточечных расстояний и разностей
I.1. Обозначения
I.2. Межточечные расстояния при равномерном распределении
I.3. Распределение со стационарными расстояниями
I.4. Изотропное точечное поле со стационарными расстояниями и прогноз кимберлитов
I.5. Анизотропное точечное поле со стационарными разностями и прогноз землетрясений
I.6. Оценка плотности распределения
II. Распределение межточечных расстояний и косинусов межточечных углов в нормальном случае
II.1. Обозначения
II.2. Межточечные расстояния
II.3. Косинусы межточечных углов
III. Обсуждение результатов Описок литературы.

Предложения интернет-магазинов

Модернизация школьного курса физики. 7-11 классы. Методическое пособие

Автор(ы): Глазунов Анатолий Тихонович, Орлов Владимир Алексеевич, Разумовский Василий Григорьевич   Издательство: Вентана-Граф, 2014 г.  Серия: Физика. Импульс

Цена: 116 руб.   Купить

Рассмотрены тенденции модернизации курса физики в общеобразовательных школах России и за рубежом, проблема интеграции естественнонаучных знаний, прикладная направленность школьного физического образования и др. Пособие адресовано методистам и учителям физики.