x-uni.com
регистрация / вход
сейчас на линии 54 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 54 чел.
Прикладные численные методы в физике и технике, Щуп Т., 1990

Прикладные численные методы в физике и технике, Щуп Т., 1990

Прикладные численные методы в физике и технике, Щуп Т., 1990.

   В книге изложены основные численные методы анализа и линейной алгебры. Даны блок-схемы алгоритмов и соответствующие программы для микро ЭВМ, написанные на языке бейсик. Приведен набор задач как чисто вычислительных, так и с физическим содержанием для самостоятельного решения, дан краткий терминологический словарь по вычислительной технике.

Задачи на собственные значения.
Анализ некоторых типов научных и технических задач зачастую приводит к однородным системам алгебраических уравнений, которые имеют не единственное решение только при определенных значениях входящего в систему параметра. Эти специальные значения называют характеристическими или собственными числами (значениями). Решение системы, соответствующее каждому конкретному собственному значению, называют собственным вектором. Задача нахождения собственных значений возникает в самых разных случаях. Например, при рассмотрении тензора напряжений собственные значения задают главные нормальные напряжения, а собственные векторы определяют ориентации, соответствующие этим нормальным напряжениям. При анализе динамических систем собственные значения определяют частоты колебаний, а собственные векторы характеризуют их форму. При анализе конструкций собственные значения используют для определения критических нагрузок изгиба или других видов нестабильности.

Выбор наилучшею численного метода нахождения собственных значений и собственных векторов для конкретной задачи зависит от ряда факторов: природы уравнений, числа и характера отыскиваемых собственных чисел. При использовании малых компьютеров выбор численного метода зависит также от быстродействия, точности и объема памяти используемого устройства. Существуют, вообще говоря, две категории алгоритмов решения задачи на собственные значения. Итерационные методы очень просты в применении и хорошо приспособлены для отыскания наименьших и наибольших собственных значений. Методы преобразования чуть более сложны в применении, зато позволяют находить все собственные значения и собственные векторы.    

ОГЛАВЛЕНИЕ
Предисловие
1. Введение
1.1 Цифровые компьютеры 8 1.2 Архитектура микрокомпьютера 13 1.3 Микрокомпьютер как инструмент для решения численных задач 17
2. Корни алгебраических и трансцендентных уравнений
2.1 Корни нелинейного уравнения 19 2.2 Метод половинного деления 20 2.3 Метод хорд 22 2.4 Метод Ньютона 24 25 Метод секущих 26 2.6 Метод простой итерации 26 2.7 Определение корней алгебраических уравнений 31 2.8 Метод Лина для комплексных корней 32 2.9 Определение корней полинома методом Берстоу 34 2.10 Соображения о выборе алгоритма для малого компьютера 41
3. Решение систем линейных уравнений
3.1 Метод исключения Гаусса 44 3.2 Метод исключения Гаусса-Жордана 46 3.3 Отыскание обратной матрицы методом исключения Гаусса-Жордана 51 3.4 Метод Холесского для систем линейных уравнений 56 3.5 Итерационные методы решения систем линейных уравнений 62 3.6 Метод Якоби 63 3.6 Метод Гаусса-Зейделя 63 3.8 Метод последовательной верхней релаксации 64 3.9 Решение систем нелинейных уравнений 67 3.10 Простая итерация 68 3.11 Метод Ньютона 69 3.12 Метод возмущения парамтеров 76 3.13 Соображения по поводу выбора алгоритма для малого компьютера 77
4. Задачи на собственные значения
4.1 Фундаментальные положения задачи на собственные значения 80 4.2 Итерационные методы решения 82 4.3 Вычисление собственных значений методами преобразований 88 4.4 Нахождение собственных значений симметричной трехдиагональной матрицы 99 4.5 Непосредственное приведение матрицы к форме Гессенберга 101 4.6 Другие методы вычисления собственных значений 103 4.7 Выбор алгоритма решения задачи на собственные значения 112
5. Обыкновенные дифференциальные уравнения
5.1 Задачи Коши и краевая задача 115 5.2 Одношаговые методы решения задачи Коши 117 5.3 Методы прогноза и коррекции 134 5.4 Краткая характеристика методов прогноза и коррекции 138 5.5 Выбор шага 139 5.6 "Жесткие задачи" 140 5.7 Методы решения краевых задач 141 5.8 Выбор алгоритма решения обыкновенных дифференциальных уравнений 144
6. Интерполяция и приближение кривыми
6.1 Линейная интерполяция 146 6.2 Интерполяция по Лагранжу 148 6.3 Метод разделенных разностей 351 6.4 Итерационные методы интерполяции 156 6.5 Обратная интерполяция 160 6.6 Аппроксимация кривых методом наименьших квадратов 160 6.7 Сглаживание кривых с помощью сплайнов 168 6.8 Соображения по поводу выбора метода интерполяции, приближения кривой или сглаживания 174
7. Численное дифференцирование и интегрирование
7.1 Численное дифференцирование 177 7.2 Численное интегрирование 188 7.3 Интегрирование по методу трапеций 189 7.4 Интегрирование по методу Симпсона 191 15 Формулы интегрирования Ньютона-Котеса старших порядков 193 7.6 Интегрирование по методу Ромберга 198 7.7 Квадратурные формулы Гаусса 202 7.8 Обсуждение выбора метода численого дифференцирования и численного интегрирования 206
Приложение 1. Начальное обучение бейсику в системе ОС ДВК
Приложение 2. Задачи и упражнения
Приложение 3. Словарь терминов вычислительной техники
Литература.

Предложения интернет-магазинов

Сверхпроводимость

Автор(ы): Гинзбург Виталий, Андрюшин Евгений   Издательство: Альфа-М, 2006 г.  Серия: Библиотека СОИ

Цена: 250 руб.   Купить

Описывается явление сверхпроводимости - одно из самых сложных в физике твердого тела, рассматриваются необычные свойства металлов при низких температурах, приводятся примеры их использования в технике, а также сведения о современных открытиях в физике. Для учащихся старших классов. Бумага мелованная.


Практика решения физических задач. 10-11 классы. Учебное пособие

Автор(ы): Сауров Юрий Аркадьевич, Орлов Владимир Алексеевич   Издательство: Вентана-Граф, 2015 г.  Серия: Физика. Импульс

Цена: 280 руб.   Купить

Основная цель пособия - развитие интереса учащихся 10-11 классов общеобразовательных учреждений к физике, формирование более глубокого понимания физических явлений и законов на основе решения специально подобранных задач и методики их решения. Учебное пособие адресовано прежде всего старшеклассникам, в том числе абитуриентам, которым предстоит сдавать единый государственный экзамен (ЕГЭ) по физике, а также учителям, студентам педагогических вузов. Книга будет полезна всем, кто хочет улучшить свои знания по физике и освоить методы решения физических задач.


Репетитор по физике. Электромагнетизм, колебания и волны, оптика и т.д. Задачи и методы их решения

Автор(ы): Касаткина Ирина Леонидовна   Издательство: Феникс, 2015 г.  Серия: Абитуриент

Цена: 548 руб.   Купить

В пособии даны методические указания к решению задач по физике, изучаемой в 9-10-х классах средней школы и на младших курсах вузов. Рассмотрено решение множества задач как средней, так и повышенной трудности. Предложено большое количество задач для самостоятельного решения. Пособие незаменимо в процессе учебы, при подготовке к контрольным работам, государственному централизованному тестированию и экзаменам. Оно окажет большую помощь старшеклассникам и студентам в течение всего учебного процесса, а также всем, кто занимается самообразованием и сдает экзамены экстерном. 16-е издание.


Решаем задачи по физике

Автор(ы): Хребтов Владимир Александрович   Издательство: Литера, 2015 г.  Серия: На ладони

Цена: 218 руб.   Купить

В сборнике представлены все виды задач по физике с примерами и ответами.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!