x-uni.com
регистрация / вход
сейчас на линии 81 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 81 чел.
Спектральная теория и функциональные исчисления для линейных операторов, Пирковский А.Ю., 2010

Спектральная теория и функциональные исчисления для линейных операторов, Пирковский А.Ю., 2010

Спектральная теория и функциональные исчисления для линейных операторов, Пирковский А.Ю., 2010.
 
  Книга представляет собой записки семестрового курса лекций по спектральной теории, прочитанного автором в Независимом московском университете в весеннем семестре 2003 г. Ее можно рассматривать как дополнение к стандартному университетскому курсу функционального анализа. Особое внимание уделяете:» построению функциональных исчислений (от голоморфного до L-исчисления) и доказательству спектральной теоремы в ее различных формулировках. Включено также изложение теории кратности в терминах измеримых гильбертовых расслоений. Для книги характерен алгебраический подход, при котором линейные операторы трактуются как представления функциональных алгебр.
Для студентов и аспирантов математических и физических специальностей.

ГОЛОМОРФНОЕ ИСЧИСЛЕНИЕ.
Мы уже знаем, что от любого элемента любой унитальной алгебры можно «брать рациональные функции», определенные на спектре этого элемента (см. §2.4). 13 общем случае, т. е. для произвольной алгебры, никакого более содержательного функционального исчисления построить нельзя. Однако если А банахова алгебра, то положение дел меняется: от любого ее элемента можно «брать» не только рациональные, но и голоморфные функции.
Чтобы придать строгий смысл выражению «голоморфная функция от элемента банаховой алгебры», нам придется ненадолго отвлечься от классической «банаховой» науки и поговорить о более общих вещах.

Полинормированные пространства
Многие векторные пространства, встречающиеся в различных областях математики, обладают естественной топологией, которая не задается никакой нормой. Таковы, в частности, многие пространства гладких и голоморфных функций, а также пространства обобщенных функций (т.е. непрерывных функционалов на пространствах гладких функций), играющие важную роль в теории уравнений с частными производными. 13 теории операторов тоже не удается обойтись одними лишь банаховыми пространствами. Поэтому наша ближайшая цель познакомиться с некоторыми ненормируемыми пространствами, которые нам вскоре понадобятся.

Содержание
Предисловие
1. Введение: задача о функциональном исчислении
2. Спектр и его простейшие свойства
§2.1. Алгебры и спектры их элементов
§2.2. Банаховы алгебры
§2.3. Спектры элементов банаховых алгебр
§2.4. Полиномиальное и рациональное исчисления
§2.5. Спектральный радиус
Литературные указания
3. Части спектра линейного оператора
§3.1. Точечный, непрерывный и остаточный спектры. Операторы умножения
§3.2. Двойственность. Операторы сдвига
§3.3. Еще несколько частей спектра
Литературные указания
4. Голоморфное исчисление
§4.1. Полинормированные пространства
§4.2. Голоморфное исчисление: построение и свойства
§4.3. О неаналитических функциональных исчислениях
Литературные указания
5. Преобразование Гельфанда
§5.1. Максимальные идеалы и характеры
§5.2. Слабая и слабая* топологии
§5.3. Топология на спектре и преобразование Гельфанда
§5.4. Преобразование Гельфанда: примеры
§5.5. Категорная интерпретация преобразования Гельфанда.
Литературные указания
6. С*-алгебры и непрерывное исчисление
§6.1. Операторы в гильбертовом пространстве и С*-алгебры
§6.2. Спектры элементов С*-алгебр. Первая теорема Гельфанда—Наймарка
§6.3. Непрерывное исчисление: построение и свойства
Литературные указания
7. Борелевское исчисление
§7.1. Операторы и полуторалинейные формы
§7.2. Комплексные меры
§7.3. Слабо-мерная топология на В(Х)
§7.4. Слабо-операторная топология на B(H)
§7.5. Борелевское исчисление: построение и свойства
Литературные указания
8. Спектральная теорема
§8.1. Спектральные меры
§8.2. Регулярные спектральные меры и представления алгебры С(Х). Спектральная теорема
§8.3. Спектральная теорема в терминах интеграла Римана—Стилтьеса
Литературные указания
9. Функциональные модели нормальных операторов
§9.1. Модули, банаховы модули, гильбертовы модули
§9.2. Функциональная модель *-циклического оператора
§9.3. Функциональная модель: общий случай
§9.4. L-функциональное исчисление. Скалярная спектральная мера
Литературные указания
10. Теория кратности
§10.1. Измеримые гильбертовы расслоения и прямые интегралы
§10.2. Разложение гильбертова С(X)-модуля в прямой интеграл
§10.3. Теорема о классификации
Литературные указания
Литература
Предметный указатель.

Скачать бесплатно на сайте fileskachat.com

Предложения интернет-магазинов

Сборник формул по математике

Автор(ы): Цикунов А.Е.   Издательство: Питер, 2013 г.  Серия: Карманный справочник

Цена: 60 руб.   Купить

Сборник содержит формулы элементарной высшей математики - арифметики и алгебры, геометрии и тригонометрии, векторной и линейной алгебры, дифференциального и интегрального исчисления, рядов, теории вероятности и др. Он адресован школьникам и абитуриентам, студентам высших и средних специальных учебных заведений, преподавателям и инженерам. 3-е издание.


Занковские педагогические чтения. 2009-2010. Опыт. Достижения. Перспективы

  Издательство: Дом Федорова, 2010 г.

Цена: 152 руб.   Купить

В сборнике "Занковские педагогические чтения. 2009-2010. Опыт. Достижения. Перспективы" представлены работы как ученых, разработчиков системы развивающего обучения Л.В. Занкова, авторов УМК, специалистов вузов и ИПК, так и учителей-практиков. Основой содержания сборника стали материалы Занковских педагогических чтений, состоявшихся в 2009-2010 годах, а также работы участников региональных и межрегиональных семинаров. В материалах освещается широкий круг вопросов, связанных прежде всего с введением Федерального государственного образовательного стандарта начального общего образования, осмыслением потенциала системы Л.В. Занкова для реализации его требований. Кроме того, издание включает разработки уроков, выполненные учителями. Сборник может быть полезен тем, кого интересуют теория и практика современного начального образования, развивающего обучения.


Словарь омонимов и омоформ русского языка.

Автор(ы): Гребенева Юлия Николаевна   Издательство: Айрис-Пресс, 2011 г.  Серия: От А до Я

Цена: 206 руб.   Купить

Данный словарь впервые разграничивает омонимы и омоформы. В него вошло около 2500 омонимов и омоформ различных видов: лексические, грамматические, функциональные. К каждому слову дается грамматическая характеристика, толкование значения и пример употребления. 2-е издание, исправленное и дополненное


Общая химия: Учебник

Автор(ы): Хомченко Иван Гавриилович   Издательство: Новая волна, 2014 г.

Цена: 302 руб.   Купить

В книге изложены основные понятия и законы химии, теория строения атома, учение о химической связи, теория растворов и электрохимических процессов. Описаны свойства неорганических соединений. В разделе, посвященном органической химии, рассмотрены теория химического строения органических соединений А. М. Бутлерова и свойства органических соединений отдельных классов. Учебник предназначен для учащихся техникумов, колледжей и средних учебных заведений с расширенной программой по химии. Может быть полезен преподавателям химии и студентам нехимических вузов, изучающим общую или органическую химию. 2-е издание, исправленное и дополненное.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!