x-uni.com
регистрация / вход
сейчас на линии 26 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 26 чел.
Уравнения в частных производных дробного порядка, Псху А.В., 2005

Уравнения в частных производных дробного порядка, Псху А.В., 2005

Уравнения в частных производных дробного порядка, Псху А.В., 2005.

   Монография посвящена основополагающим элементам теории краевых задач для дифференциальных уравнений с частными производными дробного и континуального порядков.
Впервые в отечественной литературе проведен анализ корректных постановок и рассмотрены методы решения и исследования основных краевых задач для широкого класса таких уравнений. Изучены задачи для уравнений порядка меньше либо равного единице, диффузионно-волновых уравнений, эволюционных уравнений. Развиты метод факторизации, метод функции Грина, методы интегральных преобразований; изучены свойства возникающей при решении этих задач и имеющей очень важное значение функции типа Райта; найдены условия единственности решения задач Коши типа условий Тихонова; изучены свойства оператора интегро-дифференцирования континуального порядка, доказаны аналоги формулы Ньютона-Лейбница.
Монография будет полезна для научных работников, аспирантов, студентов и преподавателей ВУЗов.

ДИФФУЗИОННО-ВОЛНОВОЕ УРАВНЕНИЕ.
Пусть область D целиком лежит в верхней полуплоскости и обладает тем свойством, что вместе с точкой (х,у) € D она содержит интервал с концами в точках (х,у) и (х, 0). В области D рассмотрим уравнение
Lu(х,у) = uхх(х,у) - D0yu(x,y) =f(x,y).    (4.1.1)

Уравнение (4.1.1) будем называть уравнением диффузии дробного порядка в случае, когда 0 < а < 1, и волновым уравнением дробного порядка, когда 1 < а < 2, или, в общем случае, диффузионно-волновым уравнением. При а = 1 это уравнение совпадает с уравнением диффузии uхх(х,у) - uу(х,у) = f(x,y) и при а = 2 с волновым уравнением uхх(х, у) - uуу(х, у) = f(x, у).

Сначала методом редукции к системе уравнений меньшего порядка мы решим задачу Коши и первую краевую задачу для дробного уравнения диффузии. Затем методом функции Грина будут построены решения основных краевых задач в прямоугольной области и с помощью фундаментального решения будет решена задача Коши для диффузионно-волнового уравнения.

Оглавление
Предисловие
1. Вводные сведения
1.1. Специальные функции
1.2. Операторы дробного интегро-дифференцирования
1.3. Интегральные и дифференциальные уравнения дробного порядка
2. Уравнения порядка, не превосходящего единицу
2.1. Уравнение с производными Римана-Лиувилля
2.1.1. Регулярное решение
2.1.2. Представление решения
2.1.3. Функция типа Райта
2.2. Свойства функции типа Райта
2.2.1. Представление в виде ряда и формулы трансформации
2.2.2. Предельные соотношения
2.2.3. Дробное интегрирование и дифференцирование
2.2.4. Оценки
2.2.5. Свертка функций Райта
2.2.6. Свойства интегралов с функцией типа Райта
2.2.7. Неравенства для функции Райта
2.3. Задача в прямоугольной области
2.3.1. Специальное решение
2.3.2. Постановка задачи
2.3.3. Формулировка теоремы
2.4. Задача для уравнения с отрицательным коэффициентом
2.5. Задача Коши
2.5.1. Постановка задачи и представление решения
2.5.2. Теорема единственности решения. Аналог условия Тихонова
2.5.3. Случай отрицательного коэффициента
2.5.4. Неулучшаемость показателя степени в условиях единственности решения
2.6. Уравнение с производными Капуто
2.6.1. Задача в прямоугольной области
2.6.2. Задача Коши
Библиографические комментарии
3. Интегральное преобразование с функцией Райта в ядре
3.1. Определение
3.2. Свойства преобразований
3.2.1. Общие свойства
3.2.2. Преобразования степенных функций
3.2.3. Свертка преобразований
3.2.4. Связь с преобразованиями Лапласа и Меллина
3.2.5. Композиция преобразований
3.2.6. Связь с операторами дробного интегро-дифференцирования
3.2.7. Предельные соотношения
3.2.8. Сравнение преобразований
3.2.9. Преобразования некоторых функций
3.3. Применение к изучению функции типа Райта
3.3.1. Формула перестановки параметров
3.3.2. Неравенства
3.3.3. Представление в форме интеграла по положительной полуоси
3.4. Применение к решению дифференциальных уравнений дробного порядка
3.4.1. Эволюционные уравнения
3.4.2. Общее уравнение диффузии дробного порядка
3.4.3. Уравнение со свободным членом
3.5. О вещественных нулях функции типа Миттаг-Леффлера
3.5.1. Обозначения
3.5.2. Основная теорема
3.5.3. Следствия
3.5.4. Геометрическое описание
Библиографические комментарии
4. Диффузионно-волновое уравнение
4.1. Введение
4.2. Метод редукции к системе уравнений меньшего порядка
4.2.1. Задача Коши
4.2.2. Первая краевая задача
4.3. Метод функции Грина
4.3.1. Общее представление решения
4.3.2. Функция Грина первой краевой задачи
4.3.3. Вторая краевая задача
4.3.4. Смешанные задачи
4.4. Задача Коши
4.4.1. Постановка задачи
4.4.2. Фундаментальное решение
4.4.3. Решение задачи Коши
4.4.4. Единственность решения. Аналог условия Тихонова
Библиографические комментарии
5. Уравнения континуального порядка
5.1. Оператор интегро-дифференцирования континуального порядка
5.1.1. Обозначения и определения
5.1.2. Аналог формулы Ньютона-Лейбница для оператора интегрирования
5.1.3. Непрерывное уравнение Абеля
5.1.4. Аналог формулы Ньютона-Лейбница для дифференциального оператора
5.1.5. Задача Коши
5.1.6. Принцип экстремума
5.2. Задача Коши для обыкновенного уравнения континуального порядка
5.2.1. Постановка задачи
5.2.2. Представление решения
5.2.3. Фундаментальное решение
5.2.4. Решение задачи Коши
5.2.5. Положительность фундаментального решения и характер зависимости от спектрального параметра
5.3. Уравнение диффузии континуального порядка. Фундаментальное решение
5.3.1. Определение фундаментального решения
5.3.2. Асимптотика фундаментального решения
5.3.3. Представление фундаментального решения в форме контурного интеграла
5.3.4. Оценка контурного интеграла
5.3.5. Доказательство леммы 5.3.2
5.3.6. Неравенство для фундаментального решения
5.4. Общее представление решения уравнения диффузии континуального порядка
5.5. Краевые задачи для континуального уравнения диффузии
5.5.1. Первая краевая задача
5.5.2. Вторая краевая задача
5.5.3. Смешанные краевые задачи
5.6. Задача Коши уравнения диффузии континуального порядка
Библиографические комментарии
Список литературы
Именной указатель
Предметный указатель.

Скачать бесплатно на сайте fileskachat.com

Предложения интернет-магазинов

Задачи с параметрами. Иррациональные уравнения

Автор(ы): Локоть Владимир Владимирович   Издательство: АРКТИ, 2010 г.  Серия: Абитуриент: Готовимся к ЕГЭ

Цена: 175 руб.   Купить

В пособии приведены решения около 100 задач с параметрами (иррациональные уравнения и неравенства, системы, задачи с модулем). Пособие адресовано учителям, студентам, учащимся старших классов. Материал может быть использован при подготовке к единому государственному экзамену.


Математика. Решаем уравнения

Автор(ы): Знаменская Лариса   Издательство: Стрекоза, 2013 г.  Серия: Рабочая тетрадь младшего школьника

Цена: 26 руб.   Купить

Рабочая тетрадь младшего школьника. Математика. Решаем уравнения Для совместных занятий детей и родителей.


Квадратные уравнения и неравенства. Справочные материалы

  Издательство: Айрис-Пресс, 2015 г.  Серия: Справочные материалы. Математика

Цена: 17 руб.   Купить

Справочный материал по математике предназначен для индивидуальной работы учащихся в классе и дома. Пособие содержит систематизированную учебную информацию представленную в краткой табличной форме по темам: квадратные уравнения и неравенства, таблица квадратов целых чисел (от 0 до 99). Пособие позволяет быстро находить необходимые сведения по теме, обобщить знания, способствует более прочному запоминанию учебного материала.


Решаем примеры и уравнения. 1 класс

Автор(ы): Коротяева Елизавета Валентиновна   Издательство: Феникс, 2015 г.  Серия: Внеклассный практикум

Цена: 101 руб.   Купить

Пособие "Решаем примеры и уравнения. 1 класс" предназначено для самостоятельной работы учащихся. Каждый раздел четко структурирован: он содержит правила, образцы выполненных заданий различных типов, предусмотренных программой по математике для начальной школы, и упражнения для отработки практических навыков. В книге размещены ключи ко всем заданиям. Издание предназначено для учеников младших классов, их родителей и учителей. 2-е издание.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!