x-uni.com
регистрация / вход
сейчас на линии 88 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 88 чел.
Элементы математического анализа - Никольский С.М.

Элементы математического анализа - Никольский С.М.

Название: Элементы математического анализа. 1970.

Автор: Никольский С.М.

   Математический анализ в этой книге изучается на геометрической и физической основе. Непрерывный график и движение сами по себе служат основой для фундаментальных выводов. Излагаются дифференциальное и интегральное исчисления и их приложения.
   Последняя глава посвящена действительному числу, изучаемому на базе представления его в виде десятичной (вообще бесконечной) дроби.
Первое издание вышло в 1981 г. Для второго издания книга переработана и дополнена.
   Для школьников и преподавателей средних школ. Может оказаться полезной учащимся техникумов и для самообразования

   Моя книга «Элементы математического анализа», изданная в 1981 г. массовым тиражом, была быстро распродана, и теперь видно, что ее целесообразно выпустить вторым изданием. Для второго издания я решил ее переработать на основании опыта, который приобрел в последние годы, занимаясь школьными учебниками.
Изменения направлены на то, чтобы книгу свободно мог   читать   всякий,   кто   знает   математику   в   пределах 8  классов десятилетней школы. Я проследил за тем, чтобы в новом издании был охвачен программный   материал 9  и 10 классов. Этот материал   исчерпывают  первые восемь глав настоящей книги.
   Появилась необходимость ввести главу «Тригонометрические функции». Тригонометрию хотя и изучают в 8 классе, но без введения тригонометрических функций, тем более без обратных тригонометрических функций.
   Во втором издании читатель также обнаружит некоторые методические изменения в изложении материала о показательной функции. В школе показательную функцию проходят в 10 классе. Определение функции а для любых действительных х - трудный вопрос. Автор много размышлял над тем, как лучше преподнести его школьнику, чтобы было и элементарно, и научно.

Содержание
Глава 1. Функция
§ 1.1. Чем занимается математический анализ?  
§ 1.2: Обозначение множества чисел  
§ 1.3. Примеры функций  
§ 1.4. Определение понятия функции  
§ 1.5. Задание функции формулой  
§ 1.6. Задание функции графиком  
§ 1.7. Задание функции таблицей  
§ 1.8. Сложная функция  
§ 1.9. Свойства некоторых функций  
Глава 2. Тригонометрические функции
§ 2.1. Числовая окружность
§ 2.2. Функция cos а и sin а
§ 2.3. Графики Функций sin а и cos a
§ 2.4. Функции fg а и ctg а
§ 2.5. Ось тангенсов и ось котангенсов
§ 2.6. Графики функций tg а и ctg a
§ 2.7. Арксинус
§ 2.8. Арккосинус
§2.9. Арктангенс и арккотангенс
§ 2.10. Обратная функция
§ 2.11. Функции arcsln*, агосозлг, arctgA
§ 2.13. Список основных формул тригонометрии
Глава 3. Предел
§ 3.1. Предел последовательности
§ 3.2. Бесконечно большая величина
§ 3.3. Действия с пределами
§ 3.4. Предел
§ 3.5. Предел функции
§ 3.6. Действия с пределами функций
§ 3.7. Непрерывность функции
§ 3.8. Элементарные функции
§ 3.9. Непрерывность сложной функции
§ 3.10. Разрывные функции
Глава 4. Показательная, логарифмическая и общая степенная функции
§ 4.1. Свойства функции а
§ 4.2. а* для целых и рациональных х
§ 4.3. о* для действительных х
§ 4.5. Число е
§ 4.6. Логарифмическая функция
§ 4.7. Логарифм с основанием 10
§ 4.8. Степенная функция
Глава 5. Производная
§ 5:1. Мгновенная скорость
§ 5.2. Касательная к кривой и сила тока
§5.5. Формулы дифференцирования
§5.6. Производная от показательной функции
§ 5.7. Производная от логарифмической функции
§ 5.8. Производная от произведения и частного
§5.9. Производная от igxvicigx
§ 5.10. Задачи
§ 5.11. Производная сложной функции
§ 5.12. Производная обратной функции
Глава 6. Применения производной
§6.2. Возрастание и убывание функции
§ 6.3. Выпуклость и вогнутость
§6.4. Черчение схематических графиков
§ 6.5. Теоремы о среднем
Глава 7. Интегральное исчисление
§ 7.1. Первообразная
§ 7.2. Неопределенный интеграл
§ 7.3. Замена переменной
§ 7.4. Проблема интегрирования элементарных функций
§ 7.5. Площадь криволинейной фигуры. Определенный интеграл
§ 7.6. Работа. Масса стержня
§ 7.7. Теорема Ньютона-Лейбница
§ 7.9. Свойства определенных интегралов
§ 7.10. Площадь круга
§ 7.11. Длина окружности
§ 7.12. Объем тела вращения
§ 7.13. Объем шара
§ 7.14. Площадь поверхности шара
§ 7.15. Работа электрического заряда
§ 7.16. Давление жидкости на стенку
§ 7.17. Центр тяжести
Глава 8. Дифференциальные уравнения
§ 8.1. Охлаждение тела
§ 8..2. Нахождение закона движения тела по его скорости
§ 8.3. Равномерно ускоренное движение
§ 8.4. Колебание пружины
Глава 9. Формула Тейлора
§ 9.1. Понятие формулы Тейлора
§ 9.2. Примеры
Глава 10. Действительное число
§ 10.3. Сравнение действительных чисел
§ 10.5. Числовая прямая
§ 10.6. Принцип вложенных отрезков
§ 10.8. Свойства действительных чисел
Глава 11. Формула бинома Ньютона. Комбинаторика
§ 11.1. Число С
§ 11.2. Формула бинома Ньютона. Метод индукции
§ 11.3. Перестановки
§ 11.4. Размещения
§ 11.5. Сочетания
§ 11.6. Связь с биномиальными коэффициентами. Другой вывод формулы бинома Ньютона
§ 11.7. Вероятность события
Глава 12. Комплексные числа
§ 12.1. Понятие комплексного числа
§ 12.2. Уравнение х* с
§ 12.3. Применение комплексных чисел в квадратных уравнениях
§ 12.5. Показательная форма комплексного числа
Глава 13. Приближенные вычисления
§ 13.1. Понятие приближения
§ 13.2. Абсолютная погрешность
§ 13.3. Относительная погрешность
§ 13.4. Вычисление произведения и частного
§ 13.5. Обоснование правила
Дополнительные упражнения

Скачать бесплатно на сайте fileskachat.com
Скачать бесплатно на сайте depositfiles.org

Предложения интернет-магазинов

Математика. Алгебра и начала анализа. Учебник. 10 класс. ФГОС

Автор(ы): Никольский Сергей Михайлович, Решетников Николай Николаевич, Потапов Михаил Константинович, Шевкин Александр Владимирович   Издательство: Просвещение, 2016 г.  Серия: Математика и информатика

Цена: 629 руб.   Купить

Учебник позволяет изучать материал курса алгебры и начал математического анализа на базовом уровне, рассчитанном на 3 часа в неделю, а также на углублённом уровне в двух вариантах, рассчитанных на 4 и на 5 часов в неделю. Учебник нацелен на подготовку учащихся к обучению в вузах. Рекомендовано Министерством образования и науки Российской Федерации. 3-е издание.


Алгебра и начала математического анализа. Методические рекомендации. 10 класс: пособие для учителей.

Автор(ы): Федорова Надежда Евгеньевна, Ткачева Мария Владимировна   Издательство: Просвещение, 2015 г.  Серия: Математика и информатика

Цена: 328 руб.   Купить

Книга содержит методические рекомендации учителям, преподающим алгебру и начала математического анализа в 10 классе по учебнику авторов Ю. М. Колягина и др. Пособие написано в соответствии с концепцией обучения алгебре и началам математического анализа по этому учебнику, а также в соответствии с его содержанием и структурой. В нём даны как общие, так и конкретные советы по изучению каждой темы.


Алгебра и начала математического анализа. Методическое пособие для учителя. ФГОС

Автор(ы): Мордкович Александр Григорьевич, Семенов Павел Владимирович   Издательство: Мнемозина, 2015 г.  Серия: Математика

Цена: 337 руб.   Купить

В пособии представлены рабочая программа курса алгебры и начал математического анализа в 10-11-м классах, приведено примерное тематическое планирование учебного материала в 10-м классе (с характеристикой видов учебной деятельности). Даны методические рекомендации по работе с учебником А. Г. Мордковича, П. В. Семенова "Алгебра и начала математического анализа (базовый и углублённый уровни). 10 класс" и приведены решения наиболее трудных задач из второй части учебника.


Алгебра и начала математического анализа. 11 класс. Методическое пособие для учителя. ФГОС

Автор(ы): Мордкович Александр Григорьевич, Семенов Павел Владимирович   Издательство: Мнемозина, 2015 г.  Серия: Математика

Цена: 337 руб.   Купить

В пособии представлены рабочая программа курса алгебры и начал математического анализа в 10-11-м классах, приведено примерное тематическое планирование учебного материала в 11-м классе (с характеристикой видов учебной деятельности). Даны методические рекомендации по работе с учебником А. Г. Мордковича, П. В. Семенова "Алгебра и начала математического анализа. 11 класс (базовый и углублённый уровни)" и приведены решения наиболее трудных задач из второй части учебника. 3-е издание, переработанное.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!