x-uni.com
регистрация / вход
сейчас на линии 109 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 109 чел.
Справочник по вероятностным распределениям, Вадзинский Р.Н., 2001

Справочник по вероятностным распределениям, Вадзинский Р.Н., 2001

Справочник по вероятностным распределениям, Вадзинский Р.Н., 2001.

   В Справочнике подробно описаны 13 дискретных и 35 непрерывных одномерных вероятностных распределений, наиболее часто используемых на практике. Справочные материалы предваряются кратким обзором основных понятий теории вероятностей, относящихся к одномерным вероятностным распределениям. В Приложениях приведены графики, помогающие выбрать тип теоретического распределения, подходящего для сглаживания исследуемого выборочного распределения.
Коротко рассмотрены возможности использования статистических пакетов STATGRAPHIСS и STATISTICA для выполнения вычислений, связанных с основными вероятностными распределениями. Столь подробные справочники такого рода в нашей стране до сих пор не издавались.
Справочник предназначен для широкого круга специалистов разных профилей, использующих в своей работе методы теории вероятностей и математической статистики. Может быть использован преподавателями, аспирантами и студентами высших учебных заведений.

   Случайная величина — это такая переменная величина, которая в зависимости от случайного исхода испытания принимает какое-то одно из своих возможных значений, причем заранее неизвестно, какое именно. В данном справочнике случайные величины обозначаются большими буквами из конца латинского алфавита — чаще всего буквами X, Y, Z. Если это необходимо, обозначения случайных величин снабжаются цифровыми индексами, например: Х1, Х2,..., Хn. Возможные значения случайных величин обозначаются соответствующими малыми буквами латинского алфавита. Так, например, возможное значение случайной величины X обозначается буквой х, а возможное значение случайной величины Y — буквой у.
Числовое значение х, которое приняла случайная величина X в каком-либо конкретном испытании, называется реализа-цией этой случайной величины в данном испытании.
Множество значений, которые может принимать случайная величина X, называется областью возможных значений этой случайной величины.

ОГЛАВЛЕНИЕ
Глава 1 СПРАВОЧНЫЕ ДАННЫЕ ОБЩЕГО ХАРАКТЕРА

1.1. Основные понятия и определения
1.2. Соотношения между распределениями
1.3. Симметричные, смещенные и усеченные распределения. Смеси распределений
1.4. Оценивание параметров
1.5. Генерирование случайных чисел
1.6. Таблицы, техника вычислений
1.7. Указатель обозначений
Глава 2 ДИСКРЕТНЫЕ (ЦЕЛОЧИСЛЕННЫЕ) РАСПРЕДЕЛЕНИЯ
2.1. Дискретное равномерное распределение
2.2. Распределение Пуассона
2.3. Распределение Бернулли
2.4. Биномиальное распределение
2.5. Геометрическое распределение
2.5.1. Геометрическое распределение 1
2.5.2. Геометрическое распределение 2 (распределение Фарри)
2.6. Отрицательное биномиальное распределение
2.6.1. Отрицательное биномиальное распределение 1
2.6.2. Отрицательное биномиальное распределение 2 (распределение Паскаля)
2.7. Гипергеометрическое распределение
2.8. Отрицательное гипергеометрическое распределение
2.8.1. Отрицательное гипергеометрическое распределение 1
2.8.2. Отрицательное гипергеометрическое распределение 2
2.9. Логарифмическое распределение
2.9.1. Логарифмическое распределение 1
2.9.2. Логарифмическое распределение 2
2.10. Распределение Пойа
2.10.1. Распределение Пойа 1
2.10.2. Распределение Пойа 2 (предельная форма)
2.11. Дзета-распределение (закон Ципфа—Эстоупа)
2.12. Распределение Бореля—Таннера
Глава 3 НЕПРЕРЫВНЫЕ РАСПРЕДЕЛЕНИЯ
А. Распределения с возможными значениями на всей числовой оси
3.1. Нормальное распределение (распределение Гаусса—Лапласа)
3.2. Двустороннее показательное распределение (распределение Лапласа)
3.3. Распределение Коши
3.4. Распределение экстремального значения
3.4.1. Распределение минимального значения
3.4.2. Распределение максимального значения
3.5. Двойное показательное распределение
3.6. Логистическое распределение
3.7. Распределение Чампернауна
3.8. Распределение Шарлье (ряд Грама—Шарлье типа А)
Б. Распределения с возможными значениями на положительной полуоси
3.9. Показательное (экспоненциальное) распределение
3.10. Гамма-распределение
3.10.1. Классическое (двухпараметрическое) гамма-распределение
3.10.2. Смешенное (трехпараметрическое) гамма-распределение
3.11. Распределение Эрланга
3.11.1. Распределение Эрланга m-го порядка
3.11.2. Нормированное распределение Эрланга m-го порядка
3.11.3. Обобщенное распределение Эрланга второго порядка
3.12. Распределение Вейбулла—Гнеденко
3.12.1. Классическое (двухпараметрическое) распределение Вейбулла—Гнеденко (распределение минимального значения типа Ш)
3.12.2. Смешенное (трехпараметрическое) распределение Вейбулла—Гнеденко
3.13. Гиперэкспоненциальное распределение второго порядка
3.14. Распределение модуля n-мерного случайного вектора
3.15. Распределение Рэлея
3.16. Обобщенное распределение Рэлея (распределение Рэлея—Райса)
3.17. Распределение Максвелла
3.18. Распределение Накагами
3.19. Бета-распределение второго рода
3.20. Логарифмически нормальное (логнормальное) распределение
3.21. Распределение Парето
3.22. Распределение модуля нормальной случайной величины (отраженное нормальное распределение)
3.23. Усеченное нормальное распределение (одностороннее усечение)
3.23.1. Усечение слева
3.23.2. Усечение справа
3.24. Обратное гауссовское распределение (распределение Вальда).
В. Распределения с возможными значениями на ограниченном интервале
3.25. Равномерное (прямоугольное) распределение
3.26. Бета-распределение первого рода
3.26.1. Классическое бета-распределение
3.26.2. Обобщенное бета-распределение
3.27. Параболическое распределение
3.28. Распределение арксинуса
3.29. Распределение Симпсона
3.30. Усеченное нормальное распределение (двухстороннее усечение)
Г. Распределения, используемые в математической статистике
3.31. х2-Распределение Пирсона
3.32. х-Распределение Пирсона
3.33. r-Распределение Стъюдента
3.34. F-распределение Фишера—Снедекора (распределение дисперсионного отношения)
3.35. Z-распределение Фишера
Приложение 1. Графики для выбора типа сглаживающего распределения вероятностей
Приложение 2. Вероятностные распределения в статистических пакетах прикладных программ для ПЭВМ
Литература

Скачать бесплатно на сайте fileskachat.com

Предложения интернет-магазинов

Тренировочные тесты по математике для подготовки к ЕГЭ по материалам ЕГЭ 2001-2010 гг.

Автор(ы): Балаян Эдуард Николаевич   Издательство: Феникс, 2010 г.  Серия: Большая перемена

Цена: 111 руб.   Купить

В издании представлены 62 авторских варианта ЕГЭ, начиная с 2001 по 2010 г. включительно. Цель книги - познакомить старшеклассников и абитуриентов с тестами, близкими к оригинальным вариантам ЕГЭ прошлых лет, а также с их основными идеями. Каждая глава представлена вариантами, соответствующими материалам реальных заданий ЕГЭ, и вариантами, составленными с учетом демонстрационных заданий ЕГЭ. Вариант № 1 во всех главах дается с подробным решением и обоснованием, ко всем остальным вариантам приходятся ответы. Адресована выпускникам средних школ и абитуриентам для подготовки к ЕГЭ по математике, а также учителям, преподавателям подготовительных курсов вузов и репетиторам.


Менеджмент качества в школе на основе стандартов серии ГОСТ Р ИСО 9000-2001

Автор(ы): Матрос Дмитрий Шаевич   Издательство: Центр педагогического образования, 2008 г.  Серия: Информатизация процесса обучения

Цена: 229 руб.   Купить

Книга посвящена актуальной, но мало разработанной проблеме - менеджменту качества в школе на основе стандартов серии ГОСТ Р ИСО 9000-2001. Описываются рекомендации по применению этих стандартов, описаны новые информационные технологии, только на основе которых можно сегодня строить менеджмент качества. Все предложенные в книге модели прошли многолетнюю апробацию во многих школах России и показали свою высокую эффективность. Книга адресована учителям, руководителям образовательных учреждений и их заместителям, работникам органов управления всех уровней, а также научным сотрудникам и преподавателям вузов, ИПК, ИУУ, работникам методической службы.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!