x-uni.com
регистрация / вход
сейчас на линии 29 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 29 чел.
Решение задач с параметрами. Теория и практика.

Мирошин В.В.

Решение задач с параметрами. Теория и практика.

Введение 7
Глава I. Психолого-педагогические аспекты формирования содержательной методической линии «Задачи с параметрами» к системе школьного математического образования 11
§ 1. Система школьного математического образования в средней и старшей школе 11
§ 2.Системный подход в обучении 16
§ 3. Принципы разработки содержательно-методической линии задач с параметрами 27
§ 4. Анализ положения задач с параметрами в современной системе школьного математического образования 32
4.1. Статистический анализ 32
4.2. Методологический анализ 37
4.3. Психологический анализ 43
Выводы 46
Глава 2. Методологический анализ содержательной методической линии «Задачи с параметрами» 48
§ 1. Задачи с параметрами как аналоги научно-исследовательских задач прикладной математики 48
§ 2. Вопросы классификации задач с параметрами и методов их решения 56
2.1. Систематизация задач с параметрами 56
2.2. Некоторые методы решения задач с параметрами 61
Функциональный метод решения задач с параметрами 62
Графический метод решения задач с параметрами 62
Метод замены 63
Метод изменения ролей переменных 63
Метод перехода от общего к частному 63
Метод свободных ассоциаций 63
Метод обратного хода 65
§ 3. Методы декомпозиции алгебраических и трансцендентных уравнений и неравенств 65
3.1. Некоторые определения 65
3.2. Методы декомпозиции простейших уравнений 68
3.3. Методы декомпозиции некоторых неравенств 72
3.4. Некоторые частные методы декомпозиции 75
§ 4. Основные понятия задач с параметрами 76
4.1. Определение понятия «параметр» и «задача с параметрами» в пособиях 77
4.2. Определение понятия «параметр» в учебно-методических комплектах по математике 78
4.3. Определение понятия «параметр» 81
4.4. Основные понятия, связанные с определением параметра 85
4.5. Понятие решения задачи с параметрами 87
§ 5. Понятие общего решения уравнений и неравенств с параметром (параметрами) 91
5.1 Уравнение с одной переменной и одним параметром 91
5.2. Классы однотипности частых уравнений 95
5.3. Понятие общего решения неравенства с параметром 102
Глава 3. Реализация концепции формирования содержательно-методической линии задач с параметрами 106
§ 1. Линейное уравнение, пикейное неравенство, линейная функция 106
1.1. Формирование понятия постоянной и переменной величин. Выделение из множества переменных параметров 106
1.2. Введение понятия уравнения, линейного относительно приоритетно выбранной переменной 110
1.2.1. Рассмотрение частных случаев линейных уравнений 110
1.2.2. Формулировка понятия «уравнение», «корень уравнения» 112
1.2.3. Этап усвоения
1.3. Линейная функция. Решение линейных неравенств с одной переменной 123
1.4. Линейное уравнение с двумя переменными. график линейной функции 128
1.5. Расстояние отточки до прямой 137
1.6. Системы линейных уравнений с двумя переменными 139
1.7. Линейное неравенство с двумя переменными 148
Метод областей на плоскости 149
1.8. Уравнения и неравенства, приводимые к линейным уравнениям 155
1.9. Задачи, использующие график линейной функции 157
§ 2. Формирование содержательно-методической линии задач с параметрами в ходе изучения свойств квадратичной функции 163
2.1. Методика формирования содержательно-методической линии задач с параметрами в теме «Квадратный трехчлен. Квадратичная функция» 164
2.2. Предварительный этап: квадратное уравнение и квадратичная функция. Определение и график 165
2.3. Решение квадратных уравнений с параметрами по определению 167
Обучающий этап 170
2.4. Дискриминант квадратного трехчлена 173
2.5. Сохранение знака значений квадратного трехчлена 178
2.6. Корни квадратного трехчлена 183
2.7. Соотношение между корнями квадратного трехчлена. Теорема Виета 187
2.8. Расположение корней квадратного трехчлена относительно начала координат 190
2.9. Расположение корней квадратного трехчлена относительно точки/? числовой оси 193
2.10. Расположение корней квадратного трехчлена относительно интервала (р ; q) 196
2.11. Решение симметрических систем уравнений 204
2.12. Взаимное расположение корней двух квадратных трехчленов 211
Приложение. Заданный материал 233
§ 1 Линейное уравнение. Линейная функция 233
1.1. Формулировка понятия «уравнение», «корень уравнения» 233
1.2. Общий вид линейного уравнения с одним параметром. Допустимые значения параметра 234
1.3. Решение линейных неравенств 236
1.4. Линейное уравнение с двумя переменными. Формирование первоначального понятия функции 238
1.5. Расстояние отточки до прямой 239
1.6. Системы линейных уравнений с двумя переменными. Геометрический смысл решения 239
1.7. Линейное неравенство с двумя переменными 243
1.8. Уравнения и неравенства, приводимые к линейным уравнениям 745
1.9. Задачи, использующие график линейной функции 246
§ 2. Квадратное уравнение и квадратичная функция 251
2.1. Решение уравнений и неравенств с параметрами по определению 251
2.2. Дискриминант квадратного трехчлена 252
2.3. Соотношение между корнями квадратного трехчлена. Теорема Виета 254
2.4. Сохранение знака значений квадратного трехчлена 255
2.5. Расположение корней квадратного трехчлена относительно начала координат 259
2.6. Расположение корней квадратного трехчлена относительно произвольно выбранной точки р числовой оси 260
2.7. Расположение корней квадратного трехчлена относительно интервала (р ; q) 260
2.8. Решение систем уравнений 263
2. 9. Взаимное расположение корней двух квадратных трехчленов 264
2.10. Метод интервалов решения неравенств 265
§ 3. Различные задачи с параметрами, использующие свойства линейной и квадратичной функций 268
Список использованной литературы 280

Скачать бесплатно на сайте yadi.sk

Предложения интернет-магазинов

Решение задач с параметрами с помощью графиков функций

Автор(ы): Карасев Владимир Анатольевич, Левшина Галина Дмитриевна   Издательство: Илекса, 2012 г.  Серия: Готовимся к ЕГЭ

Цена: 126 руб.   Купить

Книга адресована учащимся и учителям, а также абитуриентам. Она посвящена задачам с параметрами, которые решаются с помощью графиков функций. Умение строить графики позволяет существенно облегчить решение многих с виду сложных задач с параметрами. Учебное пособие написано так, чтобы читатель мог самостоятельно научиться решать задачи с параметрами и успешно подготовиться к ЕГЭ. Авторы ориентировались на типы задач и уровень сложности С5 из ЕГЭ. В каждом разделе сначала рассматриваются методы построения графиков функций от самых простых до весьма сложных. В ряде случаев исследование функции элементарными средствами дополняется исследованием с помощью производной. Затем разбирается решение задач с параметрами, в процессе решения которых используются графики этих функций. По каждому разделу приводятся задачи для самостоятельного решения с ответами. Учитель сможет использовать материалы книги на уроках при изучении данного раздела, а также при подготовке учащихся к экзаменам.


Задачи с параметрами. Иррациональные уравнения

Автор(ы): Локоть Владимир Владимирович   Издательство: АРКТИ, 2010 г.  Серия: Абитуриент: Готовимся к ЕГЭ

Цена: 175 руб.   Купить

В пособии приведены решения около 100 задач с параметрами (иррациональные уравнения и неравенства, системы, задачи с модулем). Пособие адресовано учителям, студентам, учащимся старших классов. Материал может быть использован при подготовке к единому государственному экзамену.


Математика. Подготовка к ЕГЭ: решение задач с параметрами. Типовые задания 20

Автор(ы): Прокофьев Александр Александрович, Корянов Анатолий Георгиевич   Издательство: Легион, 2015 г.  Серия: Готовимся к ЕГЭ

Цена: 219 руб.   Купить

Пособие посвящено одному из самых трудных заданий ЕГЭ по математике - заданию 20 профильного уровня (бывшее задание С5). В книге рассмотрены основные подходы к решению задач с параметрами: алгебраический, функциональный, функционально-графический и геометрический. Задачи классифицированы по методам их решения. В большом количестве представлены и примеры выполнения заданий, и упражнения для самостоятельной работы. Ко всем заданиям даны ответы, а в некоторых случаях приведены указания. Издание адресовано выпускникам, сдающим ЕГЭ по математике профильного уровня, а также учителям и методистам. Книга дополняет учебно-методический комплекс "Математика. Подготовка к ЕГЭ". Учебные пособия издательства "Легион" допущены к использованию в образовательном процессе приказом Минобрнауки России № 729.


Задачи с параметрами и методы их решения

Автор(ы): Просветов Георгий Иванович   Издательство: Альфа-Пресс, 2010 г.

Цена: 117 руб.   Купить

В учебно-практическом пособии рассмотрены основные методы и приемы решения задач с параметрами. Приведенные в учебном материале примеры и задачи позволяют успешно овладеть знаниями по изучаемой дисциплине. Пособие содержит программу курса и задачи для самостоятельного решения с ответами. Издание рассчитано на школьников, преподавателей и всех тех, кто интересуется математикой.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!